Что такое автомобильные бензины, их состав и свойства

Содержание

Этанольное моторное топливо для автомобильных двигателей что это

Этанольное моторное топливо для автомобильных двигателей что это

Для автомобилей, эксплуатируемых в СССР , используются бензины и дизельные топлива, отвечающие определенному сортаменту.

Топливом для автомобилей с карбюраторными двигателями яв-ляются бензины различных у.арок.

Свойства автомобильных бензинов

Автомобильные бензины должны отвечать следующим требованиям: обладать хорошей испаряемостью, оптимальной детонационной стойкостью, высокой химической стабильностью, не должны содержать воду и механические примеси, должны иметь минимальное содержание серы.

Испаряемость бензина — это способность бензина переходить при данных условиях из жидкого состояния в парообразное. Испаряемость бензина определяется его количеством, выкипающим при нагреве до определенных температур. Показателем поведения бензи! на в двигателе является температура, при которой он испаряется на 10, 50 и 90% от общего количества испытуемого бензина. 10% бензина должно выкипать при нагреве его до 80° С. Это необходимо для обеспечения легкого пуска двигателя; 50% бензина должно вы. кипать при нагреве его до 145° С, что необходимо для быстрого прогрева двигателя при бесперебойной его работе до установления требуемого теплового режима. Выкипание бензина при нагреве характеризуется температурой перегонки 90% бензина и температурой конца его кипения. Невыкипающие при этих температурах тяжелые фракции осаждаются на стенках цилиндров. Это приводит к смыванию смазки, разжижению масла и другим отрицательным последствиям. Однако слишком большое количество легких фракций в летний период может вызвать образование паровых пробок в системе питания.

Для двигателя любого типа необходимо подбирать бензин, обеспечивающий бездетонационную работу на всех режимах. Детонация — это ненормальный Процесс сгорания, происходящий с высокими скоростями и сопровождающийся резким металлическим стуком. Детонация вредно отражается на работе двигателя, вызывает повышенный износ деталей кривошипно-шатунного механизма и обгорание клапанов.

Бензин представляет собой смесь ряда жидких углеводородов, в число которых входят как сильно детонирующие углеводороды, например гептан, так и недетонирующие — изооктан и др. Детонационная стойкость бензина оценивается октановым числом. Октановое число показывает процентное содержание изооктана в такой его смеси с гептаном, детонационная стойкость которой, определяемая на специальном двигателе, равноценна стойкости бензина данной марки. Таким образом, бензин будет тем более стойким против детонации, чем выше его октановое число.

Бензин не должен содержать механических примесей и воды. В зимний период эксплуатации наличие воды создает возможность образования в топливопроводах ледяных пробок. Механические примеси способствуют более интенсивному изнашиванию жиклеров и сокращению срока службы фильтров.

Наличие в бензине серы способствует повышенному коррозийному износу двигателя и ведет к снижению его мощности и экономических показателей.

Содержание серы в бензине в зависимости от его марки должно быть не более 0,10—0,15%.

Марки бензинов

Отечественная нефтеперерабатывающая промышленность выпускает товарные бензины следующих марок: А-66, А-72, А-76, АИ-93, АИ-98 и бензин автомобильный «Экстра» (октановое число 95).

Буква обозначает, что бензин автомобильный, а цифра —октановое число, определенное по моторному методу. Наличие в маркировке буквы И показывает, что октановое число определено по исследовательскому методу.

Моторный и исследовательский метод отличаются друг от друга условиями испытаний. Условия испытаний бензинов по мо-т0ЛЬКму методу более жесткие, поэтому топлива, испытанные по мо-T°PH°MV методу, получают более низкое значение октанового числа. Т0РНВсе автомобильные бензины, кроме АИ-98 и «Экстра», выпускается двух сортов: летние и зимние.

Во время перехода с летнего оензина на зимнии и наоборот в течение 1 мес. возможно применять бензины обоих видов, а также их смеси.

При эксплуатации автомобилей следует использовать бензины тех марок, которые указаны заводами-изготовителями автомобилей.

Правила обращения с этилированным бензином

Для повышения детонационной стойкости бензинов в них добавляют специальную присадку — антидетонатор. В качестве антидетонатора используют этиловую жидкость (основную часть которой составляет тетраэтилсвинец).

Бензины марок А-66, А-76, А-93, А-95, АИ-93 и АИ-98 выпускаются этилированными, т. е. с добавкой тетраэтилсвинца.

Поскольку продукты распада тетраэтилсвинца, поступающие с отработавшими газами в окружающую атмосферу, являются в известной мере токсичными, то в густонаселенных местностях с большой плотностью движения автотранспорта применяются исключительно неэтилированные бензины.

Этилированные бензины окрашивают в различные цвета (красный, оранжевый, синий, зеленый и др.).

Этилированные бензины сильно ядовиты и опасны для здоровья людей, поэтому при обращении с этилированным бензином следует соблюдать следующие правила:

1. Применять этилированный бензин следует только как топливо для двигателей.

2. Не применять этилированный бензин для мойки деталей и мытья рук.

3. Не перевозить этилированный бензин с другими грузами, вместе с людьми, а также в кузовах легковых автомобилей, автобусах, кабинах грузовых автомобилей.

4. Не допускать расплескивания этилированного бензина при заправке, перекачке и транспортировке. В случае попадания этилированного бензина на полы, стены и другие неметаллические предметы их нужно немедленно обезвредить 1,5% раствором дихлор-амина в чистом неэтилированном бензине или хлорной известью, употребляя ее в виде кашицы. Металлические предметы нужно обмыть или обтереть керосином:, i

5. Исключить возможность подтекания топлива и проникнове. ния отработавших газов в кабину автомобиля.

6. Детали двигателя и системы питания при ремонте автомоби. лей, работавших на этилированном бензине, необходимо промыть в керосине и протереть.

7. Для перекачки этилированного бензина нужно пользоваться специальными приспособлениями (насосами, грушами). Засасывание этилированного бензина и продувка системы питания ртом запрещаются.

8. Не приступать к работе с этилированным бензином без спец. одежды, которая должна храниться на предприятии.

9. При попадании этилированного бензина на кожу его необходимо смыть ветошью, смоченной в керосине, а затем теплой водой с мылом. При попадании в глаза необходимо обратиться к врачу.

10. Перевозка и хранение этилированного бензина допускаются только в специальной, плотно закрывающейся таре. Тара должна иметь надпись: «Этилированный бензин. Ядовит. Годен только как топливо для автомобилей».

11. Загрязненные этилированным бензином обтирочные материалы, ветошь, опилки собираются и сжигаются в установленном месте.

Лица, работающие с этилированным бензином, инструктируются о мерах предосторожности и проходят периодические медицинские осмотры.

При сгорании этилированных бензинов на горячих деталях двигателя (свечи, тарелки выпускных клапанов и пр.) скапливается много отложений, приводящих, в частности, к шунтированию электродов свечей зажигания. Поэтому при работе двигателя на этилированных бензинах надо внимательно следить за состоянием свечей зажигания.

Дизельные топлива

Для автомобилей, имеющих дизельные двигатели, предназначается специальное дизельное топливо, в состав которого входят более тяжелые по сравнению с бензиновыми нефтяные фракции.

Свойства дизельных топлив

Процесс сгорания топлива в дизельном двигателе отличен от процесса сгорания в карбюраторном двигателе, поэтому требования, предъявляемые к дизельному топливу, отличаются от требований, предъявляемых к бензинам.

Дизельное топливо должно отвечать следующим требованиям: обеспечивать легкий пуск и мягкую работу двигателей, не создавать затруднений при подаче в двигатель при помощи топливной аппаратуры, не вызывать коррозии деталей двигателя, не давать нагара, не содержать механических примесей и воды.

Период задержки воспламенения топлива оценивается цетано-числом. Цетановое число соответствует процентному содержало цетана (Ci6H34) в смеси с альфаметилнафталином (С10Н7СН3) пои условии, что эта смесь при испытании на специальном двигате-пе равноценна по воспламеняемости дизельному топливу данной марки. Следовательно, чем выше цетановое число, тем более плавно будет нарастать давление при сгорании топлива и двигатель будет работать менее жестко. Высокоцетановое топливо обладает лучшими пусковыми свойствами.

Надежная подача топлива в цилиндры зависит от вязкости топлива и температуры его застывания. Чем больше вязкость топлива, тем хуже его распыление и сгорание. Температура застывания должна быть на 10—15° С ниже температуры окружающего воздуха.

Топливо не должно вызывать коррозии деталей двигателя. Для уменьшения коррозийного действия топлива содержание в нем серы и органических кислот строго ограничивается. -Не допускается присутствие в топливе щелочей, водорастворимых кислот, активных сернистых соединений, так как эти компоненты увеличивают коррозийное действие.

Нагар в цилиндрах образуется вследствие содержания в топливе смолистых веществ. Оценка топлива на содержание смолистых веществ производится по коксовому числу. Коксовое число показывает количество кокса р процентах (от взятого для пробы топлива), образовавшегося при испытании его в специальном приборе. Чем больше коксовое число, тем больше образуется нагара и отложений при сгорании топлива. Повышенный нагар и отложения увеличивают износ деталей двигателя.

Топливо не должно содержать механических примесей и воды. Механические примеси, имеющиеся в топливе, засоряют топливную аппаратуру и фильтры и способствуют преждевременному выходу их из строя.

В зимнее время вода может привести к образованию ледяных пробок в фильтрах и топливопроводах.

Марки дизельных топлив

Нефтеперерабатывающей промышленностью СССР выпускаются товарные дизельные топлива следующих марок: А —для температуры окружающего воздуха —50 °С и выше; ЗС—30 °С и выше; 3 — —20 °С и выше и Л — 0° С и выше ( ГОСТ 305—73). Выпускаются также специальные марки топлив: ДА — для температуры окружающего воздуха не ниже —30 °С; ДЗ -30 °С и выше; ДЛ — 0 °С и выше ( ГОСТ 4749-73).

Нормы расхода топлива

На расход топлива для автомобилей установлены единые государственные нормы.

Для легковых автомобилей и автобусов установлены следующие линейные нормы расхода топлива в литрах на 100 км пробега.

Для автомобилей с прицепом нормы расхода топлива слагаются из линейной нормы на пробег и нормы на транспортную работу, выполняемую автомобилем и прицепом. Эти нормы увеличиваются на каждые 100 км пробега автомобиля с прицепом по сравнению с нормой для одиночного автомобиля на 2 л для автомобилей с карбюраторными двигателями и на 1,3 л, с дизельными двигателями на каждую тонну собственной массы прицепа.

Для автомобилей-самосвалов нормы расхода топлива слагаются из линейной нормы на пробег и надбавки на каждую ездку с грузом в размере 0,25 л.

Нормы расхода жидкого топлива могут быть повышены в следующих случаях:
— при работе в зимнее время (при установившейся средней температуре воздуха ниже 0 °С) в южных районах —до 5%, в районах с умеренным климатом — до 10%, в северных районах —до 15% и в районах Крайнего Севера — до 20%;
— при работе на дорогах в горных местностях (свыше 1500 м над уровнем моря) или на дорогах со сложным планом (наличие в среднем на 1 км пути более пяти закруглений радиусом менее 40 м) — до 10%;
— для автомобилей, работающих с частыми остановками (автобусы, автомобили работающие на территории предприятий, автомобили для перевозки продуктов и др.) —до 10%;
— при работе в тяжелых дорожных условиях (в период сезонной распутицы, и снежных заносов) как исключение — до 35% на срок не более 1 мес;
— при работе в карьерах в тяжелых дорожных условиях — до 20%;
— при движении по полю (сельскохозяйственные работы) — до 20%;
— при учебной езде — до 25%;
— при погрузочно-разгрузочных работах в пунктах, где запрещается останавливать двигатель (нефтебазы, спецсклады и др.), на 1 ч простоя автомобиля установлен дополнительный расход топлива исходя из нормы расхода топлива на 5 км пробега автомобиля.

При работе автомобиля на внегородских дорогах с усовершенствованными покрытиями нормы расхода снижают до 15%.

Примечание. В случае необходимости применения одновременно нескольких надбавок норму расхода топлива устанавливают по сумме или разности этих надбавок.

На внутригаражные разъезды и технические надобности (технические осмотры, регулировочные работы и т. д.) разрешается расходовать до 0,5% топлива от общего его количества, потребляемого предприятием.

Пути экономии топлива

Расходы на топливо составляют значительную долю в общих затратах на эксплуатацию автомобилей.

Снижения расхода топлива можно добиться следующими путями:
— исключением потерь топлива при хранении, транспортировке и. раздаче;
— содержанием автомобиля в технически исправном состоянии; правильной регулировкой топливной аппаратуры автомобиля; правильными приемами вождения автомобиля и уходом за ним в пути.

Топливо для автомобилей должно храниться в условиях, исключающих возможность его испарения и загрязнения.

Транспортировать топливо следует в специальных автоцистернах или в чистой таре, имеющей металлические пробки с резьбой и прокладки.

При раздаче и перекачке топлива следует следить за исправностью применяемого оборудования и инвентаря. Должна быть устранена возможность потерь топлива от подтекания кранов цистерн при опорожнении тары, из-за неисправности топливораздаточных пистолетов.

Содержание автомобиля в технически исправном состоянии оказывает большое влияние на экономию топлива. К факторам, наиболее заметно влияющим на ухудшение топливной экономичности автомобиля, относятся: подтекание топлива из системы питания, нарушение регулировки топливной аппаратуры, неправильная установка угла опережения зажигания и др. Потери на трение в узлах и агрегатах автомобилей также существенно сказываются на расходе топлива, поэтому при техническом обслуживании автомобилей особое внимание следует уделять правильной регулировке узлов трансмиссии и заправке их соответствующими сортами смазочных материалов.

1 Область применения

Настоящий стандарт распространяется на жидкие моторные топлива, содержащие 5 % — 10 % (по объему) этанола (далее — бензанолы), предназначенные для автомобильных двигателей с принудительным зажиганием, кроме двигателей для военной и специальной техники, а также двухтактных двигателей, и устанавливает показатели качества, подлежащие включению во все виды документации, по которой изготавливаются бензанолы.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.018-93 Система стандартов безопасности труда. Пожаровзрывобезопасность статического электричества. Общие требования

ГОСТ 12.1.044-89 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 12.4.011-89 Система стандартов безопасности труда. Средства защиты работающих. Общие требования и классификация.

ГОСТ 511-82 Топливо для двигателей. Моторный метод определения октанового числа

ГОСТ 2177-99 (ИСО 3405-88) Нефтепродукты. Методы определения фракционного состава

ГОСТ 5066-91 (ИСО 3013-74*) Топлива моторные. Методы определения температуры помутнения, начала кристаллизации и кристаллизации

* В части метода А.

ГОСТ 8226-82 Топливо для двигателей. Исследовательский метод определения октанового числа

ГОСТ 19121-73 Нефтепродукты. Метод определения содержания серы сжиганием в лампе

ГОСТ 19199-73 Масла смазочные. Метод определения антикоррозионных свойств

ГОСТ 28828-90 Бензины. Метод определения свинца

ГОСТ 29040-91 Бензины. Метод определения бензола и суммарного содержания ароматических углеводородов

ГОСТ Р 51859-2002 Нефтепродукты. Определение серы ламповым методом

ГОСТ Р 51930-2002 Бензины автомобильные и авиационные. Определение бензола методом инфракрасной спектроскопии

ГОСТ Р 51941-2002 Бензины. Газохроматографический метод определения ароматических углеводородов

ГОСТ Р 51942-2002 Бензины. Определение свинца методом атомно-абсорбционной спектрометрии

ГОСТ Р 51947-2002 Нефть и нефтепродукты. Определение серы методом энергодисперсионной рентгенофлюоресцентной спектрометрии

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Классификация

3.1 Марки бензанолов устанавливаются в зависимости от октанового числа, определяемого по исследовательскому методу: БИ 80, БИ 92, БИ 95, БИ 98.

В зависимости от температуры помутнения бензанолы подразделяют на два вида:

Рекомендуется к прочтению  Как правильно подсчитывать расход бензина – проверенные способы

летний — для применения в период с 1 апреля по 1 октября;

зимний — для применения в период с 1 октября по 1 апреля.

4 Технические требования

4.1 Показатели качества бензанолов приведены в таблице 1 . Нормы по указанным показателям устанавливаются в документации на бензанолы конкретных марок в пределах значений, предусмотренных настоящим стандартом.

Перечень зарубежных стандартов на методы испытаний, которые могут быть использованы для контроля качества бензанолов, приведен в приложении А .

Таблица 1 — Показатели качества бензанолов

1 Октановое число (детонационная стойкость), не менее:

по исследовательскому методу

по моторному методу

2 Концентрация свинца, мг/дм 3 , не более

3 Объемная доля этанола, %

4 Массовая доля кислорода, %, не более

5 Давление насыщенных паров, кПа

6 Фракционный состав:

объемная доля испарившегося бензанола, %, при температуре:

150 ° С, не менее

конец кипения бензанола, ° С, не более

остаток в колбе, % (по объему), не более

7 Концентрация серы, мг/кг, не более

8 Объемная доля бензола, %, не более

9 Степень коррозии стального стержня, баллы, не более

По ГОСТ 19199 или [ 2 ]

10 Фазовая стабильность (температура помутнения) бензанола, °С, не выше:

на месте производства:

для летнего вида

для зимнего вида

на месте применения:

для летнего вида

для зимнего вида

Примечание — Испытания по показателю 9 проводят при температуре 38 °С в течение 4 ч. в присутствии дистиллированной воды. В качестве материала металлического стержня используют сталь марки Ст. 3.

5 Требования безопасности

5.1 Бензанолы являются малоопасными продуктами и по степени воздействия на организм относятся к 4-му классу опасности по ГОСТ 12.1.007.

5.2 Бензанолы обладают наркотическим действием, раздражают верхние дыхательные пути, слизистую оболочку глаз и кожу человека. Постоянный контакт с бензанолом может вызвать острые воспаления и хронические экземы.

5.3 Предельно допустимая концентрация паров углеводородов бензанолов в воздухе производственных помещений — 100 мг/м 3 в соответствии с ГОСТ 12.1.005.

Содержание углеводородов в воздухе рабочей зоны определяют газохроматографическим методом. Не допускается наличие бензанолов в питьевой воде. Присутствие бензанолов определяют визуально по наличию маслянистой пленки на поверхности воды.

5.4 В соответствии с ГОСТ 12.1.044 бензанол представляет собой легковоспламеняющуюся жидкость с температурой самовоспламенения 255 °С — 370 °С. Температурные пределы воспламенения: нижний — минус 27 °С — минус 39 °С; верхний — минус 8 °С — минус 27 °С.

Концентрационные пределы распространения пламени: нижний — 1,0 %, верхний — 6 % (по объему).

5.5 При загорании бензанола применяют следующие средства пожаротушения: распыленную воду, пену; при объемном тушении — углекислый газ, составы СЖБ и 3,5, пар.

5.6 В помещениях для хранения и использования бензанолов запрещается обращение с открытым огнем; электрооборудование, электрические сети и искусственное освещение должны быть взрывобезопасного исполнения. При работе с бензанолом не допускается использовать инструменты, дающие при ударе искру.

5.7 Емкости и трубопроводы, предназначенные для хранения и транспортирования бензанола, должны быть защищены от статического электричества в соответствии с ГОСТ 12.1.018.

5.8 С целью исключения попадания бензанола в системы бытовой, промышленной и ливневой канализации, а также в открытые водоемы и почву, а его паров — в воздушную среду, оборудование и аппараты процессов слива и налива бензанолов должны быть герметизированы

5.9 При разливе бензанола необходимо собрать его в отдельную тару; место разлива протереть сухой тряпкой; при разливе на открытой площадке место разлива засыпать песком с последующим его удалением и обезвреживанием.

5.10 Помещения для работ с бензанолами должны быть оборудованы общеобменной вентиляцией, места интенсивного выделения паров бензанолов должны быть снабжены местными отсосами.

5.11 При работе с бензанолом применяют индивидуальные средства защиты в соответствии с ГОСТ 12.4.011.

Работу в зоне высокой концентрации паров бензанола необходимо проводить с применением средств защиты органов дыхания; кратковременно — фильтрующих противогазов марки А, долговременно — шланговых противогазов.

5.12 При работе с бензанолом необходимо соблюдать правила личной гигиены.

При попадании бензанола на открытые участки тела необходимо его удалить и обильно промыть кожу теплой мыльной водой; при попадании на слизистую оболочку глаз обильно промыть глаза теплой водой.

5.13 Все работающие с бензанолами должны периодически проходить медицинские осмотры в установленном порядке.

Приложение А

Перечень зарубежных стандартов на методы испытаний, которые могут быть использованы для контроля качества бензанолов

[1] ASTM D 86 Метод определения фракционного состава нефтепродуктов

[ 2] ASTM D 665 Метод определения антикоррозионных свойств ингибированного масла в присутствии воды

[ 3] ASTM D 2622 Определение серы методом рентгенофлуоресцентной спектроскопии с дисперсией длины волны

[ 4] ASTM D 2699 Метод определения октанового числа для двигателей с искровым зажиганием по исследовательскому методу

[ 5] ASTM D 2700 Метод определения октанового числа для двигателей с искровым зажиганием по моторному методу спектрометрией

[ 6] ASTM D 3606 Газохроматографический метод определения бензола и толуола в товарном автомобильном и авиационном бензинах с помощью инфракрасной спектроскопии

[ 7] ASTM D 4815 Метод определения МТБЭ, ЭТБЭ, ТАМЭ, ДИПЭ, третичного амилового спирта и спиртов C 1 — C 4 в бензине с помощью газовой хроматографии

[ 8] ASTM D 4953 Метод определения давления паров бензина и смесей бензина с оксигенатами (сухой метод)

[ 9] ASTM D 5845 Метод определения МТБЭ, ЭТБЭ, ТАМЭ, ДИПЭ, метанола, этанола и третичного бутанола в бензине с помощью инфракрасной спектрометрии.

[ 10] ASTM D 6277 Определение бензола в топливах для двигателей с искровым зажиганием методом средней инфракрасной спектрометрии

[ 11] EN 237 Жидкие нефтепродукты. Определение малых концентраций свинца в бензине методом атомно-адсорбционной спектрометрии

[ 12] EN 238 Жидкие нефтепродукты. Определение содержания бензола методом инфракрасной спектрометрии

[ 13] EN 1601 Жидкие нефтепродукты. Бензин неэтилированный. Определение кислородсодержащих соединений и общего содержания связанного кислорода методом газовой хроматографии с использованием переключающихся колонок

[ 14] EN ISO 3405 Нефтепродукты. Метод определения фракционного состава при атмосферном давлении

[ 15] EN ISO 8754 Нефтепродукты. Определение содержания серы энергодисперсионным рентгенофлуоресцентным методом

[ 16] EN 12177 Жидкие нефтепродукты. Бензин. Определения содержания бензола газохроматографическим методом

[ 17] EN 13016-1 Жидкие нефтепродукты. Определение давления насыщенных паров. Часть 1: Определение давления насыщенных воздухом паров

[ 18] EN 13132 Жидкие нефтепродукты. Бензин неэтилированный. Определение содержания органических оксигенантных соединений и общего содержания органически связанного кислорода методом газовой хроматографии с использованием переключения колонки

[ 19] EN ISO 14596 Нефтепродукты. Определение содержания серы дисперсионным длинноволновым рентгено-флуоресцентным методом

[ 20] EN 24260 Нефтепродукты и углеводороды. Определение содержания серы методом сжигания по Викбольду

[ 21] EN 25163 Моторные и авиационные топлива. Определение антидетонационных характеристик. Моторный метод

[ 22] EN 25164 Моторные топлива. Определение антидетонационных характеристик. Исследовательский метод

Ключевые слова: бензанолы, этанол, октановое число, топливо моторное

МЕТАНОЛ — ЭТО БОЛЬШЕ ЧЕМ «ГИБКОЕ» ТОПЛИВО

О перспективных возможностях метанола — в статье известных американских ученых

Автор: Филип И.ЛЬЮИСИ, профессор Хьюстонского университета, автор бестселлера »Цвет нефти» Майкл ЭКОНОМИДЕС, почетный профессор Университета Корнелл (США)

Синтез метанола из природного газа является одним из наиболее эффективных и экологически безопасных существующих технологических процессов. Современные заводы по превращению природного газа в метанол могут работать с тепловым КПД, превышающим 71%, и почти самодостаточны. Они настолько чисты, что один из поставщиков процесса заявляет, что большая часть выбросов в атмосферу производится бензиновыми и дизельными транспортными грузовиками и автофургонами, обслуживающими завод, нежели самим заводом.

Кроме того, правильно сконфигурированные метаноловые заводы могут принести реальную пользу, потребляя углекислый газ из других источников, которые должны обоснованно повысить их приемлемость для сторонников защиты окружающей среды.

Метанол является вторым наиболее важным химическим промежуточным веществом после этана/этилена. Его значение в последние годы возросло в связи с изменением конфигурации НПЗ, поскольку сырая нефть во всем мире постепенно, но неизбежно становится тяжелее. Метанол очень важен как химическое сырье, но его применение в качестве моторного топлива является более перспективным.

В этой статье мы рассеем два мифа о метаноле как моторном топливе: 1) что метанол обладает более высокой токсичностью, чем другие виды моторного топлива и 2) что меньшая удельная энергия метанола представляет собой серьезную проблему.

Здоровье, безопасность и окружающая среда — преимущества метанола

Некоторые эксперты выделяют метанол как нейротоксин, хотя этанол также является известным нейротоксином, как и некоторые из веществ, обычно присутствующие в бензине. Многие будут удивлены, узнав о том, что и этанол, и бензин обычно смертельны при более низких дозах, чем метанол. Кроме того, метанол, как правило, превосходит по всем другим аспектам здоровья, безопасности и защиты окружающей среды. В грунтовых водах он имеет период полураспада 1-7 дней, что в 10-100 раз меньше, чем у некоторых веществ, содержащихся в бензине.

Метаноловое топливо было принято для гоночных трасс — в основном по причине большей безопасности; их превосходные рабочие характеристики являлись всего лишь дополнительным бонусом. Метанол горит в пять раз медленнее бензина, и его гораздо легче потушить. По оценке Агентства по охране окружающей среды EPA, применение метанола приведет к 95-процентному сокращению числа жертв вследствие возгорания транспортных средств.

Транспортные средства на метаноловом топливе с более низкой температурой сгорания выделяют немного меньше углекислого газа, значительно меньше углеводородов и гораздо меньше соединений NOx по сравнению с их бензиновыми аналогами. Это особенно привлекает, так как NOx являются самыми жесткими критериями сокращения загрязнений. Метанольное топливо могло бы исключить громоздкие, потребляющие мочевину системы селективного каталитического восстановления, в настоящее время устанавливаемые на большинстве дизельных двигателей.

Удельная энергия

Другой распространенной выдумкой является то, что более низкая удельная энергия метанола предопределяет ему более низкий статус среди потенциальных моторных топлив. При правильной оптимизации систем некоторые виды топлива, в частности метанольного, могут быть преобразованы в механическую энергию с гораздо более высокой эффективностью, чем другие.

Даже те транспортные средства, которые разработаны как бензиновые или многотопливные автомобили, должны отчасти уметь пользоваться преимуществами высокого октанового числа метанола и достигать повышения пробега в большей степени, чем это предполагалось только от энергоемкости. Один гражданин преобразовал свой автомобиль на 100-процентное метаноловое топливо путем корректировки программного обеспечения управления двигателем и замены на 41-центовое топливное уплотнение. Мощность этого автомобиля возросла на 10%, а экономия топлива в долларах на одну милю повысилась на 40% по сравнению с бензином. Соответствующие целевому назначению транспортные средства (то есть не многотопливные или работающие на преобразованном традиционном топливе) должны показать гораздо лучшие результаты.

Некоторые дальнобойщики модернизируют свои транспортные средства метаноло-водяными системами впрыска в немодифицированных иным образом дизельных двигателях, получая значительный рост экономии от 20 до 30% по сравнению с дизельным топливом! Это значительная сумма для автомобилей, которые потребляют примерно 20000 галлонов топлива в год. Измеренная мощность увеличивается до 75%, а крутящий момент на 65%: поистине сногсшибательные цифры.

Специализированные транспортные средства на базе метанола могут работать на 25-30% эффективнее, чем традиционные бензиновые двигатели, и примерно с такой же отдачей, что и дизельные двигатели. Текущие цены на метанол, принимая во внимание четность энергетических уровней, эквивалентны $2,60/галлон оптового бензина. Но если метанол на 25% эффективнее, чем бензин, соответствующая оптовая цена метанола в бензиновом эквиваленте составляет $2,09. На момент написания статьи оптовая цена на бензин составляет $3,10. Но как метанол ведет себя в сравнении с конкурентными видами топлива?

Метанол по сравнению со сжиженным природным газом (СПГ)

СПГ, без сомнения, может приводить в движение транспортные средства. Однако в случае потребительских легковых автомобилей по цене большего веса, более низкого запаса хода, длительного времени заправки, а также более низкой грузоподъемности, значительно большей стоимости автомобиля и крупных доработок и инвестиций, необходимых для инфраструктуры заправки. Переход легковых автомобилей на СПГ почти в 30-40 раз дороже, чем на метанол. Единственный коммерчески доступный легковой автомобиль на базе СПГ — Honda Civic GX продается на $7500 дороже аналогично оснащенного бензинового Civic. Станции заправки СПГ стоят примерно вдвое дороже, чем жидкие заправочные станции.

Метанол по сравнению с этанолом

Этанол сравним с метанолом по своим потребительским транспортным рабочим характеристикам, но нет никакого проверенного процесса превращения газа в этанол, сопоставимого по эффективности с превращением газа в метанол. И общественный энтузиазм, и государственные субсидии на производство этанола на базе кукурузы иссякают.

Компания Celanese объявила о технологии, которая обещает эффективность превращения газа в этанол, сравнимую с существующими технологиями превращения газа в метанол. Но она остается непроверенной в коммерческих масштабах, являясь запатентованной технологией. Между тем высокоэффективная технология превращения газа в метанол доступна у нескольких поставщиков и прошла многолетнюю проверку в коммерческих масштабах.

Метанол по сравнению с традиционными видами моторного топлива

Остается вопрос, способен ли метанол конкурировать с традиционными видами бензинового и дизельного топлива. В нынешних условиях ответом будет безоговорочное «да». Современный интерес к метанолу начался в 1976 году — в качестве замены свинца как октаноповышающей присадки. Один из результатов — Калифорнийская программа автомобилей на базе метанола M85 (85% метанола, 15% добавки, как правило, бензина), которая проходила с 1982 по 2005 год. Вначале это были специализированные транспортные средства на базе метанола (не многотопливные), охватывающие весь ряд от легковых автомобилей до микроавтобусов и автобусов.

Проводились тщательное обслуживание и записи как по транспортным средствам на базе метанола, так и по контрольной группе бензиновых автомобилей. Пробег на метаноле оказался ниже, но характеристики выбросов у транспортных средств на метаноле были на том же уровне или даже лучше.

Метаноловые выбросы оказались менее благоприятны в отношении образования озона. Ускорение транспортных средств на базе метанола от 0 до 100 км/ч происходило почти на одну секунду быстрее, чем у бензиновых транспортных средств, что было значительным улучшением.

Программа была прекращена в 2005 году. Некоторые ссылаются на прекращение Калифорнийской программы как доказательство непригодности метанола в качестве моторного топлива, но на самом деле владельцы транспортных средств были удовлетворены работой своих автомобилей. Их главным возражением был недостаток заправочных станций — на территории всего государства их было установлено только 100. В результате в 1992 году программа переключилась на транспортные средства на базе топлива M85. Без сомнения, было трудно поддержать программу в период, когда цены на нефть шли на убыль или были низкими. Возможно, отсутствие метанола в естественной среде, в отличие от этанола на базе кукурузы, было самым значительным фактором. В 1989 году Агентство по охране окружающей среды EPA поставило метанол в невыгодное положение, отказавшись от требований в отношении выбросов паров этанола, но не метанола. Никаких обоснований этой акции нет.

Технически до 15% метанола можно использовать в бензине без каких-либо модификаций и до 100% при ориентировочной стоимости всего $210 за новые многотопливные автомобили (хотя, как уже упоминалось, то же самое можно делать с гораздо меньшими затратами). Эти скромные затраты, по всей вероятности, были бы незначительными при массовом производстве транспортных средств на базе метанола. Поскольку метанол является жидкостью, как и используемые в настоящее время виды топлива, существующую заправочную инфраструктуру можно преобразовать в метанольную с небольшими модификациями. Новые метаноловые автозаправочные станции, вероятно, будут лишь на толику дороже, чем традиционные.

Хотя данная статья сфокусирована на легковых автомобилях, где метанол явно превалирует над альтернативами, и, по крайней мере, способен конкурировать с традиционными видами топлива, отметим предложения по замене тяжелых дизельных двигателей метаноловыми двигателями внутреннего сгорания с искровым зажиганием. Исключительно высокое октановое число метанола могло бы двигатели эквивалентного выхода при половине рабочего объема сегодняшних дизельных «бегемотов» привести к экономии в весе и повышению эффективности на дорогах от 4 до 9%.

США и Китай

США в данный момент наращивают производство метанола. Со времени резкого роста цен на природный газ в 2000-х годах американская промышленность метанола когда-то мирового класса в настоящее время импортирует около 80% внутреннего спроса. Но теперь, при самых низких ценах на природный газ за пределами Ближнего Востока, США вновь станут основным производителем метанола. Два завода были запущены вновь, один переместился из Чили, и один крупный потребитель метанола объявил о строительстве нового завода.

Рекомендуется к прочтению  Какой авто выбрать для города. Какой автомобиль лучше выбрать для города? Какой автомобиль выбрать для города

К 2015 году США приблизятся к возможности обеспечивать свой собственный спрос. Другие заявления о новых заводах, скорее всего, будут сделаны в ближайшие месяцы, что может привести к тому, что США вновь смогут производить метанол на экспорт.

В то время как США терпят фиаско с этанолом на базе кукурузы, Китай движется вперед быстрыми темпами в производстве метанолового моторного топлива. Доступны метаноловые смеси от M5 до M100, M15 из них наиболее популярная. В 2007 году насчитывалось 770 метаноловых автозаправочных станций; текущие показатели, вероятно, во много раз превышают это число. Рост обеспечен малыми и региональными компаниями — PetroChina и Sinopec не проявляют большого интереса ввиду избытка у них перерабатывающих мощностей. Но фактические объемы, по всей вероятности, намного превышают официальный спрос на метанольное моторное топливо, поскольку экономика топливных метаноловых смесей является очень привлекательной. Общеизвестно, что свободный рынок в Китае является живым и здоровым. Плохо, что в США метанол загнан в угол из-за пристрастия к этанолу и возведения преград перед ним. Несмотря на достаточно прохладное отношение, а, возможно, и неприятие со стороны местных крупных компаний, в Китае, наиболее быстро растущем рынке моторных топлив в мире, были внедрены стандарты M15 и M85.

Другие преимущества. Будущее

Каков потенциал того, что метанол, получаемый из природного газа, нанесет существенный удар по американскому импорту жидких углеводородов? Отдавая 17% добываемого в текущее время природного газа на производство метанола, можно избавиться от 10% американского импорта жидкостей. Это потребовало бы строительство 43 метаноловых заводов на сумму около $53 млрд. Бюджет капиталовложений США в перерабатывающую промышленность за период 2005-2010 годов составил порядка $53 млрд. Но в отличие от транспортных средств на базе возобновляемых источников энергии или СПГ, при нынешних ценах на бензин, метанол и природный газ нет необходимости обращаться за субсидиями, и заводы могут окупиться за период от 3 до 5 лет, продолжая получать прекрасную прибыль за предполагаемый 30-летний срок своей службы. И это без учета всех сопутствующих расходов, связанных с нефтедобычей на Ближнем Востоке.

Метаноловое моторное топливо, получаемое из природного газа, — это наше настоящее, а в перспективе могут быть и другие варианты. Метанол в основном производится из природного газа, но его можно получать и из биомассы — значительно эффективнее, чем этанол. Выбросы в эквиваленте углекислого газа для производства метанола из биомассы оцениваются в одну десятую кукурузного этанола. Транспортные средства на базе топливных элементов в последнее время стали рассматриваться как спасители рынка моторных топлив.

Широко известно, что самой большой проблемой автомобилей на базе топливных элементов является очень сложный и трудный переход к инфраструктуре водородной заправки. Но метанол является прекрасным носителем энергии для топливных элементов, и инфраструктуру для заправки им намного легче организовать. Будущее топливных элементов, возможно, не так далеко, но получение метанола из природного газа сегодня уже существует.

Источник: Houston Business Journal

Колонка тех.эксперта

Виды топлива для автомобилей

Данный раздел дает основные представления об отечественных топливах, причем особое внимание уделено их свойствам, определяющим необходимость применения моющих присадок и присадок-модификаторов к топливу.

1.1. ОБЩИЕ СВЕДЕНИЯ

С момента появления первых двигателей внутреннего сгорания и до настоя­щего времени основными видами топлива для автотранспорта остаются продук­ты переработки нефти — бензины и дизельные топлива. Эти топлива представ­ляют собой смеси углеводородов и присадок, предназначенных для улучшения их эксплуатационных свойств. В состав бензинов входят углеводороды, выкипающие при температуре от 35 до 2000С, а в состав дизельных топлив — углеводороды, выкипающие в пределах 180-3600С. Производство топлива включает комплекс технологических процессов пере­работки нефти и нефтепродуктов.

1.2. БЕНЗИНЫ

Бензин — это смесь легкокипящих жидких углеводородов различного строе­ния с температурой кипения 35. 2000С, получаемая при перегонке нефти, осуш­ке природного газа, переработке твердых видов топлива и при вторичной пере­работке продуктов перегонки нефти (например, мазута). Наиболее важными для бензинов являются требования к детонационной стой­кости и фракционному составу, от которых зависят их эксплуатационные характе­ристики. Бездетонационная работа двигателя достигается применением бензина с требуемой детонационной стойкостью. Наименьшей детонационной стойкостью об­ладают нормальные парафиновые углеводороды, а наибольшей — ароматические углеводороды. Варьируя углеводородный состав, получают бензины с различной детонационной стойкостью, характеризуемый октановым числом (ОЧ). Октановое число — это цифра, показывающая антидетонационную стой­кость бензина. Чем выше ОЧ, тем выше стойкость бензина против детонации. Определение ОЧ производится на специальных моторных установках.

Суще­ствуют два метода определения ОЧ: — исследовательский (ОЧИ — октановое число по исследовательскому методу); — моторный (ОЧМ — октановое число по моторному методу). Численное значение ОЧИ больше ОЧМ. Буква «А» означает, что бензин авто­мобильный. Численное значение — это октановое число бензина. Наличие после буквы «А» буквы «И» означает, что октановое число определено по исследователь­скому методу. Если после буквы «А» нет буквы «И», то октановое число определено по моторному методу. Российскими стандартами предусмотрены следующие мар­ки бензинов: А-76, А-80, АИ-91, АИ-92, АИ-93, АИ-95, АИ-98. Наиболее важным конструктивным фактором, определяющим требования двигателя к октановому числу, является степень сжатия. Повышение степени сжатия двигателей позволяет улучшить их техни­ко-экономические и эксплуатационные показатели. При этом возрастает мощность и снижается удельный расход топлива. Однако с увеличением степени сжатия необходимо применять бензин с более высоким октановым числом. Поэтому важнейшим условием бездетонационной работы двигате­лей является соответствие октанового числа, применяемого бензина и сте­пени сжатия двигателя.

Следует подчеркнуть, что требуемое октановое число зависит не только от сте­пени сжатия, но еще от формы камеры сгорания, максимальной частоты вращения коленчатого вала, теплонапряженности двигателя, наличия наддува и других фак­торов. Поэтому, встречаются ДВС, у которых степень сжатия отличается на 1. 2 единицы, а бензин для них рекомендован один и тот же. Для повышения детонационной стойкости бензинов в их состав вводят анти­детонаторы — вещества, которые при добавлении к бензину в относительно не­больших количествах резко повышают его антидетонационную стойкость. К их числу относятся антидетонаторы на основе ароматических аминов, соедине­ний ферроцена и марганца или их смесь.

С фракционным составом связаны такие характеристики двигателя, как его пуск, образование паровых пробок в системе питания двигателя, прогрев и при­емистость, экономичность и долговечность работы. Учитывая противоречивые требования к фракционному составу бензина в части содержания низкокипящих фракций с позиций обеспечения пуска двигате­ля, с одной стороны, и образования паровых пробок, обледенения карбюратора и потерь на испарение — с другой. У нас в стране вырабатываются два вида бензинов — зимний и летний. Эти бензины имеют оптимальный фракционный состав для определенных темпе­ратурных условий и позволяют без осложнений эксплуатировать автомобили в различное время года. Все отечественные стандарты предусматривают содержание в бензинах серы (до 0,05. 0,10%) и фактических смол (до 30. 100 мг/л). Эти включения вызывают вредные отложения и коррозию деталей ДВС. В соответствии со стандартами бензины не должны содержать воду, механические примеси, водорастворимые кислоты и щелочи, однако на практике встречаются слу­чаи существенного отклонения от этих требований.

1.3. ДИЗЕЛЬНЫЕ ТОПЛИВА

Дизельное топливо (ДТ) для автомобильных дизелей изготавливают из дистиллятных фракций прямой перегонкой нефти, а также из дистиллятных фрак­ций, подвергнутых гидроочистке и депарафинизации с добавлением до 1% изопропилнитрата для повышения цетанового числа. ДТ состоит в основном из двух компонентов: легко воспламеняемой жидкости (цетана) и плоховоспламеняющегося метилнафталина. Наиболее важными эксплуатационными свойствами дизельного топлива яв­ляются его воспламеняемость и прокачиваемость. Воспламеняемость топлива характеризует его способность к самовос­пламенению. Цетановое число (ЦЧ) — это процентное содержание цетана в дизельном топливе по отношению к метилнафталину.

Цетановое число (ЦЧ) характеризует способность топлива к самовос­пламенению. Чем выше ЦЧ, тем лучше топливо самовоспламеняется. Повышение ЦЧ улучшает самовоспламеняемость топлива при конкретных условиях, что способ­ствует облегчению запуска дизеля. Оптимальный диапазон для ЦЧ = 45. 50 единиц. Если ЦЧ ниже 45, то это приводит к «жесткой» работе дизеля (см. Раздел 1, п. 5.6), а если выше 55, то топ­ливо слишком рано воспламеняется, не успев хорошо перемешаться с воздухом. Последнее ухудшает эффективность и полноту сгорания топлива, увеличивая тем самым его расход. В различных российских стандартах на дизтопливо ограничение по мини­мальному значению цетанового числа неодинаково и принадлежит диапазону 35. 45. По стандартам Швеции, например, цетановое число должно быть не ме­нее 47. 50, в Калифорнии — не менее 48. Прокачиваемость дизтоплива характеризует способность топлива к перете­канию в системе питания дизеля от топливного бака до распылителя форсунки. Прокачиваемость зависит от свойств применяемого дизтоплива (температуры помутнения, предельной температуры фильтруемости, температуры застывания, содержания механических примесей и воды) и конструктивных особенностей си­стемы питания и фильтрации топлива.

Тф — предельная температура фильтруемости — это температура, при ко­торой топливо при охлаждении в определенных условиях перестает проходить через специальный топливный фильтр.

Тп — температура помутнения — это температура, при которой в процессе охлаждения топливо теряет прозрачность.

Тп близка к Тф. Помутнение вызвано выпадением высокоплавких углеводо­родов (парафинов, алканов) в виде кристаллов, способных забить собой топлив­ные фильтры. Поэтому рабочая температура применения дизтоплива должна быть выше температуры его помутнения.

Тг — температура застывания (гелеобразования) топлива — температура в про­цессе охлаждения дизтоплива, при которой топливо в специальном приборе, накло­ненном под углом 45 0 С, сохраняет неподвижность в течение 1 минуты. Этот показа­тель служит для оценки возможности заправки, транспортирования, слива и перели­ва дизельного топлива при отрицательных температурах окружающего воздуха. За нижний температурный предел применения любого дизельного топлива принимают температуру, которая на 3. 5 0 С выше температуры помутнения. Экс­плуатационную оценку принято производить также по температуре застывания, руководствуясь следующим правилом: самая низкая температура окружающего воздуха, при которой возможно применение данного дизтоплива, должна быть на 10. 15 0 С выше температуры застывания. Марки отечественного дизтоплива устанавливают в зависимости от ус­ловий применения. ГОСТ 305-82 предусматривает дизтопливо:

  • Л — летнее: для эксплуатации при температуре окружающего воздуха 0 0 С (Цельсия) и выше.
  • 3 — зимнее: а) для эксплуатации в умеренной климатической зоне при температуре окружающего воздуха -20 0 С и ниже (Тг = -35 0 С); б) для эксплу­атации в холодной климатической зоне при температуре окружающего воз­духа -30 0 С и ниже (Тг = -45 0 С).
  • А — арктическое: для эксплуатации при температуре окружающего воз­духа -45 0 С и ниже (Тг = -55 0 С).

Дизельные топлива, как и бензины, имеют условные обозначения. В обозначение летнего дизтоплива входит массовая доля серы и температура вспышки. Например, Л-0,2-40 означает: массовая доля серы 0,2%, темпера­тура вспышки 40 0 С. В обозначение зимнего дизтоплива входит массовая доля серы и температура застывания. Например, 3-0,4-35 означает: массовая доля серы 0,4%, температура застывания минус 35 0 С. В обозначение арктического дизтоплива входит только массовое содержание серы.

По сравнению с бензинами в отечественных дизтопливах содержание серы существенно больше (в 5-10 раз). Для дизтоплива содержание серы строго нор­мируется по двум составляющим: по общей сере (обычно не более 0,2. 0,5%) и меркаптановой сере (обычно не более 0,01%). При сгорании из серы образуются ее оксиды, которые оказывают коррозион­ное воздействие на металлы — детали ЦПГ. При низких температурах оксиды се­ры легко растворяются в капельках воды, образуя сернистую и серную кислоты.

Наиболее агрессивными по коррозии являются меркаптаны и сероводород. От содержания в дизтопливе серы существенно зависит срок службы дизеля. Чем больше серы, тем интенсивнее коррозионное изнашивание дизеля, поэтому в промышленно развитых странах содержание серы в дизтопливе ограничено более жесткими стандартами. Так, в Калифорнии содержание серы ограничено значе­нием 0,05%, что в 4. 10 раз меньше по сравнению с российскими видами дизтоп­лива, а в Швеции требования к содержанию серы еще более строгие.

Важным эксплуатационным свойством дизельного топлива является его склонность к образованию нагара и лаковых отложений в двигателе. Отложения приводят к нарушениям в работе двигателя, что ухудшает его тех­нико-экономические и экологические показатели. Количество вредных отложе­ний в двигателе возрастает при увеличении содержания в дизтопливе серы и сер­нистых соединений, фактических смол, непредельных и ароматических углеводо­родов (йодного числа), несгораемых неорганических соединений (зольности).

Повышение зольности топлива увеличивает износ деталей ЦПГ и топ­ливной аппаратуры дизеля.

Все отечественные стандарты не допускают наличие в дизтопливе воды и механических примесей. Однако на автозаправочных станциях этим требовани­ям дизтопливо соответствует крайне редко. Концентрация фактических смол в дизтопливе российскими стандартами ог­раничена и для разных топлив не должна превышать 200. 400 мг/л, т.е. в сред­нем она в 4 раза выше, чем у российских бензинов.

1.4. ДРУГИЕ ВИДЫ ТОПЛИВА

Альтернативные топлива — это природный газ, нефтяной углеводородный газ (пропан-бутановый), спирты, синтетическое топливо, водород, генераторный газ и др. Каждый вид топлива по сравнению с обычными нефтяными топливами имеет как преимущества, так и недостатки. Превалирование последних в настоящее время препятствует широкому распространению альтернативных топлив.

Топливо, смазочные материалы и технические жидкости

Топливо

В автотракторных двигателях применяют жидкие и газообразные топлива, Топливо этих видов в зависимости от сырья, из которого его получают, может быть нефтяного и ненефтяного происхождения. Жидкие топлива (бензин и дизельное) получают из нефти путем ее прямой перегонки или крекинг-процессом.

Газообразные топлива как естественного происхождения, так и искусственные, полученные газификацией твердых топлив или другими способами, применяют в автотракторных двигателях в сжиженном и сжатом состоянии. К сжиженным газовым топливам относятся газы, способные при относительно низких давлениях (до 2 МПа) и нормальной температуре (20°С) переходить в жидкое состояние. Сжатые газы при нормальной температуре не переходят в жидкое состояние даже при высоком давлении (до 20 МПа), поэтому их используют в газообразном состоянии.

Расширенное применение газообразных топлив обусловлено их преимуществами:

  • меньшей стоимостью
  • способностью к лучшему смесеобразованию
  • полным сгоранием в цилиндрах
  • отсутствием разжижения моторного масла

Автомобильные бензины для карбюраторных двигателей должны удовлетворять следующим требованиям:

  • иметь высокие карбюрационные и антидетонационные свойства
  • давать минимальное количество нагара
  • не вызывать коррозии
  • обладать высокой стабильностью при хранении

Товарные сорта бензинов получают смешиванием дистиллятов бензина прямой перегонки и термического крекинга, к которым добавляют с целью повышения их антидетонационной стойкости моторный бензол, алкилбензол, бензин каталитического крекинга, технический изооктан и др. С точки зрения антидетонационной стойкости наиболее желательны в бензине ароматические углеводороды, однако при сгорании они образуют канцерогенные вещества, в частности, 3,4 бензпирен. Поэтому нормами Европейского Союза содержание ароматических углеводородов в бензине не должно превышать 10%.

Ранее по ГОСТ 208467 бензин выпускался следующих марок: А-76, АИ-93 и АИ-98. Для первой из указанных марок октановое число определялось моторным методом, а для двух последующих — исследовательским методом. Сейчас для неэтилированных бензинов в зависимости от октанового числа, определенного исследовательским методом, установлены следующие марки бензинов: «Нормаль-80», «Регуляр-92», «Премиум-95» и «Супер-98». Октановое число этих бензинов, определенное моторным методом, равно соответственно 76 — 83 — 85 — 88. Стандарт разрешает применение для этих бензинов марганцевых антидетонаторов.

Дизельные двигатели имеют меньший удельный эффективный расход топлива — 170…180 г/элсч по сравнению с карбюраторными — 220…250 г/элсч ввиду большей степени сжатия. В конце сжатия, когда давление составляет 30 — 35 атм и температура 500…550°С, за 15…25° до ВМТ начинается и через 6…10°после ВМТ заканчивается впрыск топлива, которое сгорает, обеспечивая работу двигателя.

Дизельное топливо должно удовлетворять следующим эксплуатационным требованиям:

  • обладать хорошими низкотемпературными свойствами, не содержать механических примесей и воды
  • обеспечивать хорошее смесеобразование и испарение, для чего иметь оптимальную вязкость и фракционный состав
  • обладать хорошей воспламеняемостью, т.е. обеспечивать легкий запуск, мягкую работу двигателя и полное бездымное сгорание, что зависит от вязкости, химического и фракционного составов
  • не вызывать нагаро- и лакообразования
  • не содержать коррозийных продуктов

Дизельные топлива получают смешением в основном трех дистиллятов прямой перегонки: керосинового, газойлевого и частично солярового, с добавлением элементов каталитического крекинга. В зависимости от требующегося сорта дизельного топлива изменяют пропорцию при смешении компонентов. Например, соляровый дистиллят вводится лишь в летнее дизельное топливо, а арктическое дизельное топливо почти целиком состоит из керосинового дистиллята.

Рекомендуется к прочтению  На каких японских авто стоит двигатель миллионник. Самые надежные бензиновые и дизельные двигатели

Автотракторное дизельное топливо вырабатывается трех сортов:

  • Л (летнее), применяемое при температуре окружающего воздуха 273 К (0 оС) и выше
  • З (зимнее) — для эксплуатации при температуре 253 К (-20 °С) и выше
  • А (арктическое), используемое при температуре 223 К (-50 °С) и выше

Смазочные материалы для автомобилей

Для обеспечения надежного смазывания и длительной работы механизмов в масла вводят присадки, которые улучшают эксплуатационные качественные показатели масел. Присадки представляют собой металлоорганические и другие сложные химические соединения. Их классифицируют в зависимости от выполняемых ими функций в масле.

Моторные масла

Классификация моторных масел в соответствии с ГОСТ 17479-72 предусматривает выпуск их с вязкостью от 6 до 20 сСт при 100°С с интервалом через 2сСт. По эксплутационным свойствам масла делят на шесть групп (А, Б, В, Г, Д, Е), отличающиеся количеством и эффективностью введенных присадок. Поэтому в марке указывается значение кинематической вязкости при 100°С и буква, которая позволяет выбрать масло для двигателей различной степени теплонапряженности.

Масла группы А не содержат присадок и в настоящее время не выпускаются. В масла группы Б вводили до 5% присадок и использовали их в малофорсированных карбюраторных двигателях старых марок.

Масла группы В предназначены для работы в среднефорсированных двигателях и содержат до 8 % присадок, а масла группы Г для форсированных двигателях содержат до 14 % присадок.

Масла групп Б, В, Г делятся на 2 подгруппы:

  • 1 — для карбюраторных двигателей
  • 2 — для дизелей

Эти индексы указываются в марке. Для работы теплонапряженных двигателей с наддувом предназначены масла группы Д.

Масла группы Е предназначены для малооборотных стационарных дизелей и в сельском хозяйстве не применяются.

Буква М в маркировке масла указывает на то, что масло моторное. Например, масло М-4з/8В2, моторное, класс вязкости 4, имеет вязкость 8 сСт при 100°С, содержит загущающую присадку и предназначено для среднефор- сированных двигателей.

Зимой применяются масла с вязкостью 8 сСт, а летом — 10 сСт. Для среднефорсированных двигателей грузовых автомобилей применяются масла М-8В1 и М-10Вь Для высокофорсированных двигателей автомобилей применяются масла М-8Г1 и М-10Г1.

Масло М-8В2 и М-10В2 применяется для среднефорсированных двигателей тракторов устаревших марок. Для двигателей тракторов К-700, К-701, Т-150К и ДТ-175С применяются только масла группы Г — М-8Г2 и М-10Г2 .

Для автомобилей КАМАЗ предназначено масло М-8Г2к и М-10Г2к, имеющие улучшенные моюще-диспергирующие, вязкостно-температурные свойства и более низкую зольность по сравнению с другими маслами группы Г. Это масло рекомендуется к использованию также для тракторов К-700 и К-701.

Для обеспечения эксплуатации высокофорсированных дизелей с наддувом выпускается в ограниченном количестве масло М-10Дм, имеющее улучшенные моющие и антиокислительные свойства.

Масла МС-14, МС-20, и МК-22 используются в поршневых авиационных двигателях, а цифра в их маркировке указывает вязкость в сСт при 100°С. Эти масла могут использоваться в высокофорсированных тракторных двигателях.

Принято следующее обозначение масел для двигателей различного назначения. Оно состоит из групп знаков:

  • первая буква М (моторное)
  • вторая — цифры, характеризующие класс кинематической вязкости
  • третья — прописные буквы (А, Б, В, Г, Д, Е), означающие принадлежность к группе масел по эксплуатационным свойствам

Масла различных групп различаются эффективностью и содержанием присадок.

В марках масел, предназначенных для карбюраторных двигателей, указывают индекс 1, а для дизелей — индекс 2. Универсальные моторные масла, предназначенные для использования как в дизелях, так и в карбюраторных двигателях одного уровня форсирования (обозначаемые одинаковыми буквами), индекса в обозначении не имеют. Масла, принадлежащие к разным группам, имеют двойное обозначение, в котором первая буква характеризует качество масла при применении в дизелях, а вторая — в карбюраторных двигателях.

Примеры обозначения:
М — 8 — Вь где М — моторное масло; 8 — вязкость при 100 оС, мм2/с; В1 — для среднефорсированных карбюраторных двигателей;
М — 61/10 — Гь где 6 — класс вязкости, для которого вязкость при 255 К (-18 оС) находится до 10400 мм2/с; з (в индексе) — наличие загущающей (вязкостной) присадки, вследствие чего масло может быть использовано в качестве как зимнего, так и всесезонного; 10 — вязкость при 373 К (100 °С); T -для высокофорсированных карбюраторных двигателей.

Трансмиссионные масла

Трансмиссионные масла используют для смазывания агрегатов и механизмов трансмиссий тракторов, автомобилей и других машин.

Трансмиссионные масла по вязкости делят на четыре класса (9, 12, 18 и 34), а по эксплуатационным свойствам — на пять групп (1…5) и маркируют следующим образом:

  • ТМ — трансмиссионное масло
  • первая цифра — группа масла
  • вторая — класс кинематической вязкости

Пример обозначения: ТМ-5-123(рк), где ТМ — трансмиссионное масло; 5 — наличие противозадирной высокоэффективной присадки многофункционального действия; 12 — класс вязкости (1100… 1399 мм2/с); з — наличие загущающей присадки; рк — обладает рабочеконсервационными свойствами.

Пластичные смазки представляют собой мазеобразные продукты, состоящие из минерального или синтетического масла (основы), загустителя, наполнителя, стабилизатора и присадок.

Технические жидкости

В качестве охлаждающих жидкостей в автотракторных двигателях применяют воду и низкозамерзающие жидкости (антифризы).

Антифризы представляют собой смесь этиленгликоля (двухатомного спирта) с водой и антикоррозионной присадкой. Промышленность выпускает антифризы марок 40 и 65. Эти антифризы предназначены для эксплуатации двигателей в холодное время года при температуре до 233…208 К (- 40…- 65 оС).

Низкозамерзающая жидкость «Тосол» предназначена для использования всесезонно в двигателях легковых (ВАЗ, ГАЗ и др.) и грузовых (ЗИЛ-4331, КамАЗ) автомобилей, тракторов К-701. Выпускают три марки этой жидкости: АМ, А-40 и А-65. «Тосол» марки АМ представляет собой концентрат, при разбавлении которого на 50 % дистиллированной водой получают антифриз с температурой застывания 238 К (- 35 °С). При соответствующем разбавлении «Тосола» марки АМ дистиллированной водой получают марку А-40 с температурой замерзания 233 К (- 40 °С) или А-65 с температурой замерзания 208 К (- 65 °С).

Тормозные жидкости предназначены для использования в гидравлическом приводе тормозов и сцеплений легковых и грузовых автомобилей. Выпускают несколько марок тормозных жидкостей, например: БСК, ГТЖ-22М, ГТЖА-2 («Нева»), «Томь» и «Роса».

Что такое автомобильные бензины, их состав и свойства

После изобретения и популяризации двигателя внутреннего сгорания бензин стал одним из главных продуктов, получаемых из нефти. Его качество и состав зависят не только от технологии производства, но и от места добычи нефти. Именно этот ценный ресурс в XX веке стал причиной многих войн и конфликтов. Каков же состав бензина и его характеристики? Попробуем разобраться в этой статье.

Что такое бензин

Бензином называют горючую смесь легких углеводородов с различными примесями. Температура кипения от 33°C до 205°C. Средняя плотность составляет 0,71 г/см 3 . Начало кристаллизации -60°C. Получают бензин путем переработки нефти и в основном используют в качестве моторного топлива. Смесь легко испаряется уже при температуре 30°C, а с ростом температуры этот процесс ускоряется.

фото1

Точную химическую формулу вывести сложно, так как это смесь углеводородов со следами серы, азота, кислорода и других соединений. Бензин имеет низкие детонационные свойства. Это одна из его важнейших характеристик, поскольку такие понятия, как октановое число, детонация и степень сжатия являются ключевыми в работе двигателя и топлива.

Разберем кратко понятия октанового числа и детонации, которые связаны между собой. Чем выше октановое число бензина, тем он устойчивее к детонации, то есть, способен гореть без взрыва при сжатии. Углеводород изооктан, входящий в состав, имеет антидетонационные свойства. Его значение берут за 100. Н-гептан легко взрывается и имеет значение 0. Соотношение этих углеводородов и образует октановое число.

Пример. Октановое число топлива равно 70. Значит, по детонационным свойствам оно эквивалентно смеси 70% изооктана и 30% н-гептана.

Получение и виды

Бензины и другие углеводороды (дизельное топливо, керосин и др.) получают путем перегонки нефти. Существует несколько способов получения фракций из нефти:

  • прямая перегонка (ректификация);
  • крекинг;
  • риформинг.

Прямая перегонка

Прямая перегонка заключается в отборе разных фракций путем нагревания в определенных температурных пределах. Пары бензина собираются в верхней части колонны, а затем конденсируются и охлаждаются, образуя жидкий бензин. Ниже по уровню колонны получают фракции лигроина, керосина, солярового масла, а в самом нижнем остатке получается мазут.

фото 2

До 100°C получают I сорт, до 110°C – специальный, до 130°C – II сорт. Но получаемый таким образом бензин имеет низкое октановое число, как правило, не выше 65-70. Его доля составляет всего 5-15% от объема нефти.

В результате прямой перегонки получают также и дизельное топливо как смесь солярового масла и керосина. От бензина оно отличается узким фракционным составом и применяется в двигателях с воспламенением от сжатия, то есть, в дизельных. Способность воспламеняться под давлением и температурой – это главное свойство дизельного топлива. Для его характеристики используются не октановое, а цетановое число.

Крекинг

Название этого способа происходит от английского глагола «to crack» – «расщеплять», «раскалывать». Метод позволяет увеличить долю бензиновых фракций до 50-60%. В его основе лежат деструктивные методы, то есть, высокомолекулярные фракции расщепляются на фракции с низкомолекулярной массой. Разные группы углеводородов, такие как парафиновые, нафтеновые или ароматические, разлагаются с разной скоростью.

фото 3

В свою очередь, крекинг-процесс может происходить двумя способами: расщепление под действием высокой температуры и расщепление в присутствии катализаторов (алюмосиликаты). Термический крекинг происходит под давлением и при температуре 470-500°C. Каталитический крекинг является более совершенным. Катализатор превращает часть непредельных углеводородов в предельные, тем самым повышается качество. Конечно, технологически эти процессы более сложны. Но даже при более совершенном каталитическом крекинге октановое число не выше 75-80.

Риформинг

Риформинг – это вид крекинга, где сырьем служат лигроины или низкооктановые бензины. Таким способом увеличивают октановое число после прямой перегонки нефти или после термического или каталитического крекинга. Получают бензины с октановым числом 95-98, а с добавлением этиловой жидкости (спиртов) доводят до 100 и выше. Это также сложный технологический процесс, имеющий несколько видов.

Свойства бензинов

Как уже говорилось, бензины имеют высокую летучесть и легко воспламеняются. Наряду с устойчивостью к детонации, эти характеристики также относятся к основным. По физико-химическим параметрам бензины должны обладать следующими свойствами:

  • смесь должна быть однородной, с правильным соотношением легких и тяжелых фракций и присадок;
  • детонационная стойкость;
  • давление насыщенных паров. Это свойство связано с испаряемостью. Чем выше давление насыщенных паров, тем выше его летучесть. Летние бензины обладают более низким давлением паров. Как правило, это свойство обеспечивается добавлением бутана;
  • плотность должна быть в пределах 0,69-0,75 г/см 3 ;
  • умеренная вязкость, чтобы не затруднять протекание смеси через форсунки. Вязкость может меняться от температуры;
  • испаряемость или летучесть – одно из ключевых свойств. Другими словами, это скорость перехода бензина из жидкого состояния в газообразное. От испаряемости зависит обеспечение пуска двигателя при низких температурах и другое;
  • способность выдерживать низкие температуры. Бензин не замерзает до -60°С, при добавлении специальных присадок этот параметр можно довести до -71°С;
  • сгорание бензина. Это свойство подразумевает интенсивность взаимодействия углеводородов с кислородом при смешивании и количества тепла, выделяемого при сгорании.

Маркировка автомобильных бензинов

Маркировка состоит из буквенных и цифровых символов. Например, АИ-95 или А-90. Буквы указывают на метод определения октанового числа. Он бывает двух видов:

  • моторный (А);
  • исследовательский (АИ).

Исследовательское октановое число (ОЧИ) тестируется на одноцилиндровой установке, например, УИТ-85, при частоте вращения коленчатого вала 600 об/мин, переменной степени сжатия и температуре всасываемого воздуха 52°С, угол зажигания 13°. Тест показывает поведение бензина при средних и малых нагрузках.

Моторное октановое число (ОЧМ) также определяется на одноцилиндровом стенде с частотой вращения 900 об/мин, температуре всасываемой смеси 147°С . Как правило, значение ОЧМ ниже чем ОЧИ, так как учитываются нагрузки, резкие ускорения и т.д.

По ГОСТ Р 54283-2010 маркировка автомобильных бензинов должна состоять из трех групп знаков, разделенные дефисами.

Пример. АИ-95-4. АИ обозначает исследовательский метод определения октанового числа, 95 – октановое число, 4 – соответствие стандарту ЕВРО-4, всего их четыре класса: 2, 3, 4 и 5.

По ГОСТ 32513-2013 основными марками автомобильных бензинов являются:

  • АИ-80;
  • АИ-92 (степень сжатия до 10);
  • АИ-95 (степень сжатия 10,5 – 12,5);
  • АИ-98 (степень сжатия 12 – 14,5);
  • АИ-100, 101, 102 (детонационная стойкость выше, чем у чистого изооктана).

Как проверить качество

Водителю нужно всегда внимательно относиться к качеству топлива, и заливать только рекомендованный производителем по октановому числу бензин. К сожалению, недобросовестные поставщики или продавцы могут продавать некачественное или разбавленное топливо, что понижает заявленное октановое значение и его свойства. Для двигателя это чревато серьезными последствиями.

фото 4

Есть несколько простых и доступных методов определения качества топлива.

  1. Проверка на запах. Не должно быть запаха масла, реагентов или газа.
  2. Проверка на низкокачественные примеси. Если после испарения остается масляный след, то в нем есть вредные примеси.
  3. Проверка на цвет. Цвет также может указывать на наличие примесей. Хороший бензин светло-желтый или вовсе бесцветный. Часто можно видеть ярко-желтый цвет, что говорит о сомнительном качестве. Производители оправдываются применением особых присадок. Насколько они безвредны, можно только гадать.
  4. Проверка на присутствие масла. Тест на масло легко провести. На чистый лист капните немного топлива. Если после испарения осталось жирное пятно, то масло в нем определенно есть.
  5. Проверка на воду. Это сделать просто. В прозрачный стакан налейте топливо и добавьте совсем немного марганцовки. Чистый бензин не должен окраситься, а с водой порозовеет.
  6. Проверка на смолы. Если после сгорания небольшого количества бензина (например, на стекле) остается чистый след – топливо хорошее, коричневые или желтые пятна – присутствуют смолы.

Бензин – это питание двигателя автомобиля. От его качества и состава во многом зависит правильная работа силового агрегата. Водителю нужно разбираться в марках, понимать значение октанового числа и знать другие характеристики. Нужно помнить, что качественное топливо – это залог долгой службы любого двигателя.

Что такое моторное масло автомобиля

Современный мир изобилует автомобилями. Однако среди людей встречается вопрос – что такое моторное масло. Это связано с неопытностью или незнанием устройства машины. В интернете сложно найти конкретный, ответ по данному запросу. Наша редакция собрала полный список информации по задаче, для создания исчерпывающей статьи.

Что предствляет собой машинная смазка для двигателя

Определение понятия моторного масла

Максимально точное определение запроса техническим языком, звучит так.

– это жидкость, служащая для минимизации контакта подвижных пар трения силовой установки. Продукт разработан на основе нефтепродуктов или синтеза природного газа.

Химическое определение, что такое моторное масло для автомобиля, выглядит иным образом:

– это формула, состоящая из очищенных сложных углеводородов, добытых путем перегонки нефтепродуктов или химического синтеза. Результатом процесса является выделенная субстанция с антифрикционными свойствами. Готовый состав содержит присадки, дополняющие основу, повышающие изначальные характеристики базы.

Минералка и синтетика, что лучше

Виды смазок

Лубриканты, разработанные для обслуживания ДВС разделяются на три категории.

  1. Минералка. Данный тип жидкости представляет собой первое поколение автомобильных лубрикантов. Формулы получены при перегонке нефтепродуктов с последующей очисткой от посторонних примесей. Состоянием на 2019 год, технология изготовления считается устаревшей. Это следствие низкого качества готового продукта.
  2. Полусинтетика. Категория содержит формулы созданные путем смешивания синтетических, минеральных компонентов. Подвид выделяется оптимальным соотношением цены и качества.
  3. Синтетика. Современная жидкость, предназначенная для обслуживания высокофорсированных, турбированных, и высоконагруженных агрегатов.

Смазки LIQUI MOLY Special Tec

Назначение

По предназначению данные продукты бывают трех типов.

  1. Бензиновые. Смазки, разработанные для обслуживания бензиновых агрегатов или конструкций, обслуживаемых этанольными смесями. Заливка в другие типы конструкций недопустима.
  2. Дизельные. Изделия подготавливаются под условия работы двигателей, работающих на дизеле.
  3. Универсальные. Высокотехнологичные жидкости, допускаемые к работе в любых конструкциях агрегатов, независимо от вида горючей смеси.

Видео

Узнав о том, что такое моторное масло, пользователь сможет дать четкий ответ на заданный вопрос. Данная статья содержит только основной список информации и определения продуктов категории. Глубокие разъяснения можно узнать из других работ на нашем сайте.

Как продать автомобиль по самой выгодной цене?

Немало автовладельцев со временем решается на продажу машины. Причина может заключаться, например, в желании обзавестись более

Пузыри на тонировке, причины появления

Многие владельцы автомобилей задумываются об оклейке стекол машины тонировочной пленкой. Она не только защищает

Как автомобильные номера влияют на жизнь их владельцев

Прочитать значение номера своего автомобиля вполне можно, если ориентироваться в нумерологии. При помощи цифровой

Что такое пакет для плохих дорог и стоит ли на него сильно рассчитывать?

5 шагов как установить и подключить активную антенну на авто

Чтобы послушать в машине радио, нужно всего лишь приобрести активную антенну для транспортного средства.

Надо ли покупать медную смазку для тормозных суппортов?

Присадки для дизельного топлива, помогают ли двигателю?

Можно почаще проводить техобслуживание, а можно добавлять присадки. Какие 3 группы присадок существуют? Как

Зимние и летние моторные масла – это условность?

Что такое автодетейлинг?

моторное масло API SP

Почему нужны все более современные моторные масла? Рассмотрим 3 наиболее актуальных спецификации – API

Источник http://auto-park24.ru/dvigatel/etanolnoe-motornoe-toplivo-dlya-avtomobilnyh-dvigatelej-chto-eto.html

Источник http://techautoport.ru/dvigatel/teoriya/avtomobilnye-benziny.html

Источник http://masladvig.ru/chto-takoe-motornoe-maslo/

Понравилась статья? Поделиться с друзьями: