Можно ли из автомобильного генератора сделать электродвигатель

Содержание

Электродвигатели

Электрический двигатель, сокращенно электродвигатель — электрическая машина, с помощью которой электрическая энергия преобразуется в механическую, для приведения в движение различных механизмов. Электродвигатель является основным элементом электропривода.

В некоторых режимах работы электропривода электродвигатель осуществляет обратное преобразование энергии, то есть работает в режиме электрического генератора.

По виду создаваемого механического движения электродвигатели бывают вращающиеся, линейные и др. Под электродвигателем чаще всего подразумевается вращающий электродвигатель, так как он получил наибольшее применение.

Областью науки и техники изучающей электрические машины является — электромеханика. Принято считать, что ее история начинается с 1821 года, когда был создан первый электродвигатель М.Фарадея.

Конструкция электродвигателя

Основными компонентами вращающегося электродвигателя являются статор и ротор. Статор — неподвижная часть, ротор — вращающаяся часть.

Стандартная конструкция вращающегося электродвигателя

У большей части электродвигателей ротор располагается внутри статора. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Принцип работы электродвигателя

Принцип работы двигателя

2. Если проводник с током I согнуть в рамку и поместить в магнитное поле, то две стороны рамки, находящиеся под прямым углом к магнитному полю, будут испытывать противоположно направленные силы F

Принцип работы электродвигателя

Принцип действия электродвигателя

4. Производимые электродвигатели имеют несколько витков на якоре, чтобы обеспечить больший постоянный момент.

Принцип работы двигателя

5. Магнитное поле может создаваться как магнитами, так и электромагнитами. Электромагнит обычно представляет из себя провод намотанный на сердечник. Таким образом, по закону электромагнитной индукции ток протекающий в рамки будет индуцировать ток в обмотки электромагнита, который в свою очередь будет создавать магнитное поле.

    Подробное описание принципа работы электродвигателей разных типов:

Классификация электродвигателей

      Включение обмотки
    • БДПТ
      (Бесколлекторный двигатель + ЭП |+ ДПР)
    • ВРД
      (Реактивный двигатель с ротором с явновыраженными полюсами и сосредоточенной обмоткой статора + ЭП |+ ДПР)

      (многофазный)

      (с контактными кольцами и щетками) —> 5 —>
      • СДПМВ
      • СДПМП
      • Гибридный
      1. Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
      2. Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря [5].
      3. Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля [1].
      4. Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
      5. Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.
      • КДПТ — коллекторный двигатель постоянного тока
      • БДПТ — бесколлекторный двигатель постоянного тока
      • ЭП — электрический преобразователь
      • ДПР — датчик положения ротора
      • ВРД — вентильный реактивный двигатель
      • АДКР — асинхронный двигатель с короткозамкнутым ротором
      • АДФР — асинхронный двигатель с фазным ротором
      • СДОВ — синхронный двигатель с обмоткой возбуждения
      • СДПМ — синхронный двигатель с постоянными магнитами
      • СДПМП — синхронный двигатель c поверхностной установкой постоянных магнитов
      • СДПМВ — синхронный двигатель со встроенными постоянными магнитами
      • СРД — синхронный реактивный двигатель
      • ПМ — постоянные магниты
      • ЧП — частотный преобразователь

      Типы электродвигателей

      Коллекторные электродвигатели

      Коллекторная машина — вращающаяся электрическая машина, у которой хотя бы одна из обмоток, участвующих в основном процессе преобразования энергии, соединена с коллектором [1]. В коллекторном двигателе щеточно-коллекторный узел выполняет функцию датчика положения ротора и переключателя тока в обмотках.

      Универсальный электродвигатель

      Универсальный электродвигатель

      Может работать на переменном и постоянном токе. Широко используется в ручном электроинструменте и в некоторых бытовых приборах (в пылесосах, стиральных машинах и др.). В США и Европе использовался как тяговый электродвигатель. Получил большое распространение благодаря небольшим размерам, относительно низкой цены и легкости управления.

      Коллекторный электродвигатель постоянного тока

      Коллекторный электродвигатель постоянного тока

      Электрическая машина, преобразующая электрическую энергию постоянного тока в механическую. Преимуществами электродвигателя постоянного тока являются: высокий пусковой момент, быстродействие, возможность плавного управления частотой вращения, простота устройства и управления. Недостатком двигателя является необходимость обслуживания коллекторно-щеточных узлов и ограниченный срок службы из-за износа коллектора.

      Бесколлекторные электродвигатели

      У бесколлекторных электродвигателей могут быть контактные кольца с щетками, таким образом не надо путать бесколлекторные и бесщеточные электродвигатели.

      Бесщеточная машина — вращающаяся электрическая машина, в которой все электрические связи обмоток, участвующих в основном процессе преобразования энергии, осуществляются без скользящих электрических контактов [1].

      Асинхронный электродвигатель

      Наиболее распространенный электродвигатель в промышленности. Достоинствами электродвигателя являются: простота конструкции, надежность, низкая себестоимость, высокий срок службы, высокий пусковой момент и перегрузочная способность. Недостатком асинхронного электродвигателя является сложность регулирования частоты вращения.

      Cинхронный электродвигатель

      Синхронные двигатели обычно используются в задачах, где требуется точное управление скоростью вращения, либо где требуется максимальное значение таких параметров как мощность/объем, КПД и др.

      Специальные электродвигатели

      Серводвигатель

      Серводвигатели не являются отдельным классом двигателей. В качестве серводвигателя могут использоваться электродвигатели постоянного и переменного тока с датчиком положения ротора. Серводвигатель используется в составе сервомеханизма для точного управления угловым положением, скоростью и ускорением исполнительного механизма. Для работы серводвигатель требует относительно сложную систему управления, которая обычно разрабатывается специально для сервопривода.

      Основные параметры электродвигателя

      Момент электродвигателя

      Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

      ,

      • где M – вращающий момент, Нм,
      • F – сила, Н,
      • r – радиус-вектор, м

      ,

      • где Pном – номинальная мощность двигателя, Вт,
      • nном — номинальная частота вращения, мин -1 [4]

      Начальный пусковой момент — момент электродвигателя при пуске.

      Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

      1 oz = 1/16 lb = 0,2780139 N (Н)
      1 lb = 4,448222 N (Н)

      момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

      1 oz∙in = 0,007062 Nm (Нм)
      1 lb∙in = 0,112985 Nm (Нм)

      Мощность электродвигателя

      Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

      Механическая мощность

      Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

      ,

      • где P – мощность, Вт,
      • A – работа, Дж,
      • t — время, с

      Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы [2].

      ,

      • где s – расстояние, м

      Для вращательного движения

      ,

      ,

      Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

      Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

      Коэффициент полезного действия электродвигателя

      Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

      ,

      • где – коэффициент полезного действия электродвигателя,
      • P1 — подведенная мощность (электрическая), Вт,
      • P2 — полезная мощность (механическая), Вт
        При этом потери в электродвигатели обусловлены:
      • электрическими потерями — в виде тепла в результате нагрева проводников с током;
      • магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
      • механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
      • дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

      КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

      Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

      IEC 60034-31

      Частота вращения

      • где n — частота вращения электродвигателя, об/мин

      Момент инерции ротора

      Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

      ,

      • где J – момент инерции, кг∙м 2 ,
      • m — масса, кг

      1 oz∙in∙s 2 = 0,007062 kg∙m 2 (кг∙м 2 )

      Момент инерции связан с моментом силы следующим соотношением

      ,

      ,

      Номинальное напряжение

      Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики [3].

      Электрическая постоянная времени

      Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

      ,

      Механическая характеристика

      Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

      Сравнение характеристик внешне коммутируемых электрических двигателей

      Ниже представлены сравнительные характеристики внешне коммутируемых электродвигателей, в ракурсе применения в качестве тяговых электродвигателей в транспортных средствах.

      Сравнение механических характеристик электродвигателей разных типов

      Зависимость мощности от скорости вращения вала для двигателей разных типов

      Зависимость мощности от скорости вращения вала для двигателей разных типов при ограниченном токе статора

      Можно ли из автомобильного генератора сделать электродвигатель

      Решил провести эксперимент, по возможности использования генератора от легкового автомобиля, как тягового двигателя с прямым приводом на колесо, для велосипеда или что-либо подобного.
      У меня как раз есть исправный генератор, но использовать его в автомобиль я не могу, как и некоторые другие вещи, но зато попробую провести этот эксперимент сам. В интернете на специализированных форумах есть размышления, что так не делают, что и в конструкции генератора специально особым образом подобраны формы ротора и статора, для работы его как генератора. Да и наличие отдельной катушки возбуждения усложняет конструкцию. Но из достоинств – генератор не создает практически никаких сопротивлений вращению, если на него не подан ток, и он есть за бесплатно. Заниматься самому математическим анализом реализации такой возможности, нет достаточного опыта и данных, пока (если кто разложит все по полочкам — буду признателен).
      Схема подключения генератора:

      Генератор был аккуратно разобран:

      Из него был удален диодный мост и схема регулятора напряжения, подключены провода к обмоткам генератора, и щеточному узлу катушки возбуждения:

      Затем все было собрано аккуратно и стало иметь такой вид:

      Скрепка – торчащая из задней крышки генератора, фиксирует подпружиненные щетки в заглубленном состоянии, что позволяет правильно установить заднюю крышку, ничего не сломав. Затем скрепка вытягивается, и щетки упираются в коллектор.

      Далее, из имеющегося блока электроусилителя руля, работающего на трехфазный мотор, изымаем блок силовых транзисторов. К сожалению, использовать его как полноценный блок управления трехфазным мотором (BLDC) нельзя.

      Поэтому подключим блок силовых транзисторов к имеющейся плате 2CAN (описано ранее), через самодельную плату с драйверами управления транзисторами. А так как лето у нас короткое, то плата сделана самым простым и быстрым проверенным способом лазерной печати и утюга:

      Общая схема получилась примерно такая:

      Так как на плате 2CAN разведены не все выводы платы и микроконтроллера, пришлось добавить соединений навесным монтажом:

      Написана простая программа управления трехфазным двигателем, используя таймер №1.Пока решил не использовать датчики положения ротора, ограничившись только регулировкой частоты вращения и заполнением ШИМ (амплитуду синусоид). Если генератор покажет оптимистичные характеристики, то тогда и усложню схему и программу. Форму напряжения выбрал синусоидальную, коэффициенты для таймера рассчитал простой программой на javascript, (позволяет писать программы в любом текстовом редакторе и запускать на выполнение любым браузером), файл sine.html (в zip) прилагаю ниже.

      При открытии его браузером, можно просмотреть значения, и скопировать в буфер обмена:

      Такая конструкция получилось в итоге:

      Форма результирующего напряжения двух фаз такая (осциллограф двухлучевой к сожалению):

      (после простого R-C фильтра для щупа осциллографа), а так без фильтра на прямую:

      В качестве источника питания был выбран аккумулятор 12В 7А, через предохранитель 30 Ампер питание подавалось на схему. Обороты генератора, которые меня интересовали, были в пределах от 0 до 420 оборотов в минуту. Исходя из того, что если на шкив генератора надеть колесо диаметром 20 см, и при этом скорость максимальную ограничить в 16км/час. Подключим генератор:

      Примитивным способом оценить крутящий момент, развиваемый генератором, решили с помощью поднятия груза, подвешенного за веревку к шкиву генератора.

      Далее все расчеты довольно примитивны, и возможно есть ошибки. В качестве груза выбрал две 5-литровых емкости с водой. При диаметре шкива 5,5см, генератор с уверенно поднимал этот груз при 50 % заполнении ШИМ таймера на высоту 50 см за 3 секунды. Ток от аккумулятора составлял порядка 16 Ампер, но и напряжение на нем падало до 11 Вольт (слабоват аккумулятор). Получается, гарантирован крутящий момент примерно 2,75 ньютона на метр, при 3 оборотах в секунду. Сила тяги генератора с колесом диаметром 20см, одетого напрямую на вал, составила бы 12,5 ньютона (условная скорость составила бы примерно 7км/час). Для ребёнка, стоящего на роликах может быть и хватит. Для реализации полной мощности потребовался бы аккумулятор большей емкости, и более толстые провода. Без нагрузки, генератор вращается без подачи тока на катушку возбуждения (как несинхронный трехфазный электродвигатель). По идее, учитывая, что при потребляемой мощности в 176 ватт, получаем мощность на совершение работы, очень примерно оцененной в 16 Ватт, КПД полученного устройства не радует. Даже если удастся увеличить КПД использованием датчиков положения ротора в два -три раза, тяга маловата все таки для взрослого человека. Значительная часть тока тратится на катушку возбуждения, при этом, в зависимости от нагрузки, оборотов и температуры генератора составляет это порядка 5 — 12 Ампер. Да и генератор в родном рабочем режиме крутится на горазбо более высоких оборотах (2100 — 18000 об/мин). Выходить на рабочие токи больше 30 Ампер в схеме посчитал нецелесообразным. Конечно, используя мотор с постоянными магнитами, можно значительно поднять КПД устройства. Но все равно, значительные токи в узлах схемы, при напряжении питания в 12 Вольт, не позволяют добиться приемлемых параметров при длительной работе мотора в тяговом режиме. А перематывать катушки статора генератора под другое напряжение, количество оборотов, делать ротор с неодимовыми магнитами — это уже надо быть сильно мотивированным на это. Практичнее переходить на готовые, относительно легко доступные BLDC моторы для велосипедов, скутеров и т.д. с напряжением 36 Вольт и более. Также был подключен оригинальный двигатель, и это совсем другая тема и возможности:

      В автомобильных вентиляторах охлаждения, часто применяются двухфазные электродвигатели с постоянными магнитами, выдавая мощность под 300ватт (но коррозия и большие токи зачастую выводят из строя компактную схему управления, встроенную в мотор).

      Других целей больше не было, остался удовлетворенным полученным отрицательным результатом 🙂

      Приведу настройки таймера:

      А табличные значения получаем как написано выше (редактируем имя распечатываемого на экран массива ) 🙂 Плохо что видео нельзя тут приложить, довольно забавно. Если есть вопросы – без проблем задавайте, пишите 🙂

      С уважением, Астанин Сергей, ICQ 164487932.

      Добавил сам проект, правда внутри много лишнего осталось от проекта общения по CAN, но мотору не мешает.

      Решил провести эксперимент, по возможности использования генератора от легкового автомобиля, как тягового двигателя с прямым приводом на колесо, для велосипеда или что-либо подобного.
      У меня как раз есть исправный генератор, но использовать его в автомобиль я не могу, как и некоторые другие вещи, но зато попробую провести этот эксперимент сам. В интернете на специализированных форумах есть размышления, что так не делают, что и в конструкции генератора специально особым образом подобраны формы ротора и статора, для работы его как генератора. Да и наличие отдельной катушки возбуждения усложняет конструкцию. Но из достоинств – генератор не создает практически никаких сопротивлений вращению, если на него не подан ток, и он есть за бесплатно. Заниматься самому математическим анализом реализации такой возможности, нет достаточного опыта и данных, пока (если кто разложит все по полочкам — буду признателен).
      Схема подключения генератора:

      Генератор был аккуратно разобран:

      Из него был удален диодный мост и схема регулятора напряжения, подключены провода к обмоткам генератора, и щеточному узлу катушки возбуждения:

      Затем все было собрано аккуратно и стало иметь такой вид:

      Скрепка – торчащая из задней крышки генератора, фиксирует подпружиненные щетки в заглубленном состоянии, что позволяет правильно установить заднюю крышку, ничего не сломав. Затем скрепка вытягивается, и щетки упираются в коллектор.

      Далее, из имеющегося блока электроусилителя руля, работающего на трехфазный мотор, изымаем блок силовых транзисторов. К сожалению, использовать его как полноценный блок управления трехфазным мотором (BLDC) нельзя.

      Поэтому подключим блок силовых транзисторов к имеющейся плате 2CAN (описано ранее), через самодельную плату с драйверами управления транзисторами. А так как лето у нас короткое, то плата сделана самым простым и быстрым проверенным способом лазерной печати и утюга:

      Общая схема получилась примерно такая:

      Так как на плате 2CAN разведены не все выводы платы и микроконтроллера, пришлось добавить соединений навесным монтажом:

      Написана простая программа управления трехфазным двигателем, используя таймер №1.Пока решил не использовать датчики положения ротора, ограничившись только регулировкой частоты вращения и заполнением ШИМ (амплитуду синусоид). Если генератор покажет оптимистичные характеристики, то тогда и усложню схему и программу. Форму напряжения выбрал синусоидальную, коэффициенты для таймера рассчитал простой программой на javascript, (позволяет писать программы в любом текстовом редакторе и запускать на выполнение любым браузером), файл sine.html (в zip) прилагаю ниже.

      При открытии его браузером, можно просмотреть значения, и скопировать в буфер обмена:

      Такая конструкция получилось в итоге:

      Форма результирующего напряжения двух фаз такая (осциллограф двухлучевой к сожалению):

      (после простого R-C фильтра для щупа осциллографа), а так без фильтра на прямую:

      В качестве источника питания был выбран аккумулятор 12В 7А, через предохранитель 30 Ампер питание подавалось на схему. Обороты генератора, которые меня интересовали, были в пределах от 0 до 420 оборотов в минуту. Исходя из того, что если на шкив генератора надеть колесо диаметром 20 см, и при этом скорость максимальную ограничить в 16км/час. Подключим генератор:

      Примитивным способом оценить крутящий момент, развиваемый генератором, решили с помощью поднятия груза, подвешенного за веревку к шкиву генератора.

      Далее все расчеты довольно примитивны, и возможно есть ошибки. В качестве груза выбрал две 5-литровых емкости с водой. При диаметре шкива 5,5см, генератор с уверенно поднимал этот груз при 50 % заполнении ШИМ таймера на высоту 50 см за 3 секунды. Ток от аккумулятора составлял порядка 16 Ампер, но и напряжение на нем падало до 11 Вольт (слабоват аккумулятор). Получается, гарантирован крутящий момент примерно 2,75 ньютона на метр, при 3 оборотах в секунду. Сила тяги генератора с колесом диаметром 20см, одетого напрямую на вал, составила бы 12,5 ньютона (условная скорость составила бы примерно 7км/час). Для ребёнка, стоящего на роликах может быть и хватит. Для реализации полной мощности потребовался бы аккумулятор большей емкости, и более толстые провода. Без нагрузки, генератор вращается без подачи тока на катушку возбуждения (как несинхронный трехфазный электродвигатель). По идее, учитывая, что при потребляемой мощности в 176 ватт, получаем мощность на совершение работы, очень примерно оцененной в 16 Ватт, КПД полученного устройства не радует. Даже если удастся увеличить КПД использованием датчиков положения ротора в два -три раза, тяга маловата все таки для взрослого человека. Значительная часть тока тратится на катушку возбуждения, при этом, в зависимости от нагрузки, оборотов и температуры генератора составляет это порядка 5 — 12 Ампер. Да и генератор в родном рабочем режиме крутится на горазбо более высоких оборотах (2100 — 18000 об/мин). Выходить на рабочие токи больше 30 Ампер в схеме посчитал нецелесообразным. Конечно, используя мотор с постоянными магнитами, можно значительно поднять КПД устройства. Но все равно, значительные токи в узлах схемы, при напряжении питания в 12 Вольт, не позволяют добиться приемлемых параметров при длительной работе мотора в тяговом режиме. А перематывать катушки статора генератора под другое напряжение, количество оборотов, делать ротор с неодимовыми магнитами — это уже надо быть сильно мотивированным на это. Практичнее переходить на готовые, относительно легко доступные BLDC моторы для велосипедов, скутеров и т.д. с напряжением 36 Вольт и более. Также был подключен оригинальный двигатель, и это совсем другая тема и возможности:

      В автомобильных вентиляторах охлаждения, часто применяются двухфазные электродвигатели с постоянными магнитами, выдавая мощность под 300ватт (но коррозия и большие токи зачастую выводят из строя компактную схему управления, встроенную в мотор).

      Других целей больше не было, остался удовлетворенным полученным отрицательным результатом

      Приведу настройки таймера:

      А табличные значения получаем как написано выше (редактируем имя распечатываемого на экран массива ) Плохо что видео нельзя тут приложить, довольно забавно. Если есть вопросы – без проблем задавайте, пишите

      С уважением, Астанин Сергей, ICQ 164487932.

      Добавил сам проект, правда внутри много лишнего осталось от проекта общения по CAN, но мотору не мешает.

      после долгих дискуссий с tamp решился на эксперимент подключения генератора к генератору, чтоб снять нагрузку с генератора

      еще вопрос про четвертую пару диодов, на что они влияют?
      вообще вот к чему все


      ГАЗ Газель 2005, двигатель дизельный 3.2 л., 150 л. с., задний привод, механическая коробка передач — электроника

      Машины в продаже

      ГАЗ 3110 Волга, 1997

      ГАЗ Волга Сайбер, 2010

      ГАЗ 24 Волга, 1990

      ГАЗ 21 Волга, 1961

      Смотрите также

      Комментарии 81

      Интересно, чем все закончилось?

      Ничем, слабый он, совсем нет крутящего момента

      А подключался просто к батареи 12?

      Нее, там сложно всё

      В качестве двигла проще будет использовать генераторы постоянного тока со старых авто, они же до сих пор применяются на всяких дрезинах, кранах и проч. У троллейбусников трамвайщиков можно поискать движки там тоже постоянка.
      Из стартеров кстати делают движки на лебедки, перекомутируют обмотки для длительной работы.
      А еще не рассматривали вариант с использованием в качестве воздушного компрессора компрессор кондея, где то у джиперов встречал такое. тут и крепление к двиглу и включение по электросигналу будет.

      Был бы компресс от кондея я бы попробовал
      если найти путевый мотор на 12 вольт то конечно проще, но найти порой бывает на много сложнее чем собрать

      двигатель от ауди 100 на вентилятор радиатора, постоянка 12 вольт мощи киловата полтора и крутящий не хилый, если момент больше нужен то от редукторного генератора солнечную передачу примастить, скорость снизишь за то момент увеличишь.

      В качестве двигла проще будет использовать генераторы постоянного тока со старых авто, они же до сих пор применяются на всяких дрезинах, кранах и проч. У троллейбусников трамвайщиков можно поискать движки там тоже постоянка.
      Из стартеров кстати делают движки на лебедки, перекомутируют обмотки для длительной работы.
      А еще не рассматривали вариант с использованием в качестве воздушного компрессора компрессор кондея, где то у джиперов встречал такое. тут и крепление к двиглу и включение по электросигналу будет.

      кстати да, мысль интересная, тока как его смазывать?

      есть всякие спец устройства которые подают масло, и масло отделители на выходе нужно
      о вспомнил «Лубрикаторы»

      тогда неплохой вариант и компактный и муфта есть

      кстати да, мысль интересная, тока как его смазывать?

      на всасе лубрикатор для пневмоинструмента на выкиде влагомаслоотделитель,

      прочитал всё! букв много…
      осилил с трудом, я наверно всётаки пошёл бы путём отбора мощьности от двигателя…

      Слишком тяжелый компрессор, закрепить на двигатель на большем расстоянии и к тому же еще жестко не простое дело

      может не на двигатель?

      Можно, но тогда надо что то придумать с муфтой для компрессор
      а компресор ставить на раму
      привод с мотора

      муфту электромагнитную от каролсона
      а почему бы не придумать какой-нибудь вал отбора от КПП?
      как кстати экспирименты с генераторами?

      там видео про генератор я выложил
      муфту тоже сложно придумать, натяжные ролики, короче целый механизм получиться

      ну да механизм получится, видео посмотрел, так понимаю мощьности не хватает?

      да, мощности очень мало, если сделать через редуктор, оборотов компресора не хватит

      Руководство как сделать генератор из асинхронного двигателя

      Принцип обратимости существует в науке электротехнике. О чем это говорит? О том, что любой прибор, который занимается преобразованием энергии электрического типа в механическую, может совершать и обратный ход, т.е. получать из механической энергии электрический ток. Ознакомиться с дифавтоматом и для чего он нужен можно здесь.

      Именно на этом самом принципе обратимости основана вся работа генератора электрического тока. При этом ток формируется в обмотке статора при вращении ротора.

      Именно на этом самом принципе обратимости основана вся работа генератора электрического тока. При этом ток формируется в обмотке статора при вращении ротора.

      Может ли работать как генератор?

      В теоретической точки зрения, можно самостоятельно переделать асинхронный двигатель и использовать его в качестве генератора. Но для этого необходимо:

      • Создать благоприятную атмосферу, в которой возникновение тока будет возможным.
      • Понять физический принцип работы генератора и асинхронного двигателя.

      Многие мастера и умельцы задаются вопросом относительно создания из асинхронного двигателя генератора электрического тока. Причем. даже если следовать всем советам, не каждый достигает желаемого результата. Потому как на питательных клеммах никогда не возникнет электрического тока, сколько бы не вращали двигательный вал. Читайте что такое резистор и как он работает.

      Для тех, кому захотелось создать собственными руками из асинхронного двигателя генератор, необходимо будет сформировать магнитное поле вращающегося типа самолично.

      Принцип работы в режиме генератора

      В машине электрического типа, которая первоначально была создана для того чтобы использоваться в качестве генератора, имеется несколько активных обмоток:

      • Обмотка, находящаяся в возбужденном состоянии. Она размещена непосредственно на корпусе якоря.
      • Статорная обмотка – в ней происходит возникновение тока.

      Если говорить о принципе работы, то в его основе лежит электромагнитная индукция: в металлической обмотке порождается магнитное поле, но только после того, как на эту катушку подействует электрический ток.

      Возникновение магнитного поля непосредственно в металлической обмотке якоря происходит из-за напряжения, которое по обыкновению подается с источника питания (в данном случае с аккумулятора). Непосредственное вращение может обеспечить любой физический объект. Это может быть даже человеческая мускульная сила.

      Следует отметить, что любая конструкция электрического двигателя с ротором короткозамкнутого типа не может предусмотреть вероятность подачи электрического напряжения непосредственно на якорную обмотку. Причем это суждение верно относительно 90% всех электрических машин. Читайте как не запутаться в цветной маркировке резисторов.

      Если рассматривать асинхронный двигатель в режиме генератора КПД, то необходимо отметить, что коэффициент полезного действия будет невероятно низким. По этой причине нужно позаботиться о максимальной подаче электрической мощности на механическое устройство, только так получится мало-мальски «порядочный результат».

      Виды и особенности использования

      Генератор из асинхронного двигателя с самозапиткой на фото

      Генератор из асинхронного двигателя с самозапиткой на фото

      На сегодняшний день при достаточном количестве знаний в области механики и электричестве можно создать следующие варианты асинхронного двигателя:

      • С самозапиткой – в данном случае генератор электрического тока может работать огромное количество времени, потому как устройство сможет самостоятельно проводит запитку электричеством;
      • Из трехфазного асинхронного двигателя – в этом случае необходимо учитывать три выводящие фазы. Но как показывает практика, это совершенно бессмысленно. Для нормальной работы будет достаточно всего одной фазы;
      • Из электродвигателя от стиральной машины – при создании такого электрического генератора на выходе будет получено среднее объемы мощности.

      На снимке генератор из электродвигателя от стиральной машины

      На снимке генератор из электродвигателя от стиральной машины

      Как сделать генератор?

      Широко распространены два варианта переделывания двигателя асинхронного типа в генератор электрического тока:

        Вариант №1 Стандартный вариант переделки асинхронного двигателя в электрический генератор. В данном случае потребуется поработать на создании магнитного поля. Для этого можно будет установить магнит постоянного типа непосредственно на корпусе ротора или выполнить обмотку якоря.

      Электрический генератор на рисунке

      Электрический генератор на рисунке

      Трехфазный двигатель на фото

      Трехфазный двигатель на фото

      Внимание! В качестве источника питания может использоваться любой вариант энергии. Начиная от солнечной энергии, ветряной или энергии дизеля.

      На фото трехфазный генератор

      На фото трехфазный генератор

      При самостоятельном создании электрического генератора из асинхронного двигателя следует воспользоваться специальной типовой схемой. Без нее формирование генератора будет затруднено.

      Схема генератора на базе асинхронного двигателя

      Схема генератора на базе асинхронного двигателя

      Видео, как сделать генератор?

      Существует большое количество вариантов создания генератора электрического тока. Народные умельцы могут сделать его даже из старой стиральной машины.

      В том случае, если необходимо получить высокоэффективное устройство, то следует использовать такие устройства, которые могут генерировать большие объемы электрического тока.

      В качестве наглядного примера можно воспользоваться обучающим видеоматериалом, который представлен на Ютубе. В данном случае речь идет о генераторе Камаза и асинхронном двигателе.

      Получается, что создать генератор электрического тока собственными руками не так уж и сложно. Необходимо только определиться с типом привода. Не будет никаких проблем, если для «переделки» брать бензиновый двигатель стандартного типа. Ним не будет проблем. Намного больше трудностей у мастера возникнет, если он в качестве привода использует мельницу ветряную. Главная причина – это количество оборотов устройства, также, как и напряжения выходного типа, будут зависеть от скорости и силы ветряного потока. Читайте как работает трансформатор для галогенных ламп и какой выбрать на этой странице.

      Видео

      Смотрите на видео как сделать генератор из асинхронного двигателя:

      Следовательно, генераторы этого вида необходимо рассчитать так, чтобы при минимуме оборотов происходила выработка номинального напряжения. Соответственно на выходе нужно иметь не меньше чем 12 В.

      Источник http://engineering-solutions.ru/motorcontrol/motor/

      Источник http://englishpromo.ru/2019/12/mozhno-li-iz-avtomobilnogo-generatora-sdelat/

      Источник http://howelektrik.ru/elektrooborudovanie/elektrodvigateli/rukovodstvo-kak-sdelat-generator-iz-asinxronnogo-dvigatelya.html

      Рекомендуется к прочтению  Как работает инжекторный двигатель?
Понравилась статья? Поделиться с друзьями: