Техническое обслуживание (ТО) ходовой части автомобиля

Содержание

Нормы расхода топлива для ЗИЛ

Двигатель ZIL 130 (508) был установлен на грузовых автомобилях ZIL-130 и ZIL-131. Конструкция двигателя ZIL 130 имела много общего с двигателем модели ZIL-111, но в целом модели двигателей имели низкую степень унификации. Двигатель был уменьшен до 6 литров

, установлен двухкамерный карбюратор и оснащен ограничителем скорости. Семилитровые двигатели называются ЗИЛ-375 и используются на грузовиках Уральского автомобильного завода. Увеличение объема было достигнуто за счет увеличения радиуса цилиндров до 108 мм, ход поршня 95 мм был сохранен.

Цилиндрический блок

Блок цилиндров ZIL 130 отлит из чугуна, с водяной рубашкой-носителем и вставными влажными рукавами. Для повышения жесткости водяной рубашки делится на перегородки на замкнутые силовые цепи. Цилиндрические вкладыши отлиты из чугуна СЧ18-36 с содержанием феррита, ограниченным до 5%. В верхнюю часть лайнера вставлена ​​50-миллиметровая вставка коррозионно-стойкого аустенитного чугуна (это обеспечивает срок службы рукавов до 200 тыс. Км). Толщина рукава составляет 7,5 мм, высота рукава. 188,5 мм. Распределительный вал установлен в блоке цилиндров.

обслуживание

Замена моторного масла в двигателе ZIL-130

производить в интервале от 6000 до 10000 км в зависимости от условий эксплуатации. Объем масла в
двигателе
ЗИЛ-130 составляет 9 литров. Какое масло налить? Для двигателей было рекомендовано использовать моторные масла в течение всего сезона до минус 30 ° C. масло М-6/10 В (DV-ASZp-SE) и М-8В при температуре ниже.30 ° С ASZp-6 (М-4 / 6V,). Согласно классификации SAE, полусинтетические моторные
масла
SAE 10W-40 могут использоваться круглый год. В областях с температурой ниже.25 ° C возможно налить синтетический SAE 5W-40, 0W-30. В горячем климате также разрешено использовать минеральное масло 15W-40.
Система охлаждения двигателя
автомобиль ZIL-130 содержит 28 литров охлаждающей жидкости. После 40 000. 50 000 км рекомендуется промывать систему охлаждения.
Свеча зажигания
. A-11 или A-11B. Зазор между электродами в летний период составляет 0,8. 0,95 мм, зимой рекомендуется уменьшить зазор до 0,6-0,7 мм.

Бортовые автомобили-тягачи (ЗИЛ-431510 — длиннобазный; размеры на схеме в скобках), выпускаются Московским автомобильным заводом имени Лихачева с 1986 г. Представляют собой модернизированные автомобили семейства ЗИЛ-130, выпускавшегося с 1962 г. С 1977 г. выпускался автомобиль ЗИЛ-130-76, а с 1980 г. — ЗИЛ-130-80. Кузов — деревянная платформа с металлическими поперечными брусьями основания, с откидными задним и боковыми бортами. Предусмотрена установка надставных бортов и тента с каркасом. На ЗИЛ-431510 боковой борт состоит из двух частей. Кабина — трехместная, расположена за двигателем. Сиденье водителя — регулируемое по длине, высоте и наклону спинки.

Модификации автомобилей:

ЗИЛ-431411 и ЗИЛ-431511
— исполнение «ХЛ» для холодного климата (до минус 60°С);
ЗИЛ-431416 и ЗИЛ-431516
— для экспорта в страны с умеренным климатом;
ЗИЛ-431417 и ЗИЛ-431517
— для экспорта в страны с тропическим климатом;
ЗИЛ-431917 и ЗИЛ-432317
— с экранированным электрооборудованием для экспорта в страны с умеренным и тропическим климатом;
ЗИЛ-431610 и ЗИЛ-431710
— газобаллонные автомобили, работающие на сжатом природном газе и на бензине;
ЗИЛ-431810
— газобаллонные автомобили, работающие на сжиженном газе (на базе 431410).

Кроме того, выпускаются шасси автомобилей:

ЗИЛ-431412
— шасси ЗИЛ-43 1410;
ЗИЛ-495710
— шасси сельскохозяйственного самосвала;
ЗИЛ-431512
— шасси ЗИЛ-431510;
ЗИЛ-495810
— шасси строительного самосвала.

Двигатель.

Мод. ЗИЛ-508.10, бензиновый, V-обр. (900), 8-цил., 100×95 мм, 6,0 л, степень сжатия 7,1, порядок работы 1-5-4-2-6-3-7-8, мощность 110 кВт (150 л.с.) при 3200 об/мин, крутящий момент 402 Н-м (41 кгс-м), топливный насос Б10 — диафрагменный, карбюратор К-90 с экономайзером принудительного холостого хода или К-96, К-88АТ, К-88АМ, воздушный фильтр — инерционно-масляный ВМ-16 или ВМ-21.

Трансмиссия.

Сцепление — однодисковое, с периферийными нажимными пружинами, привод выключения — механический. Коробка передач — 5-ступ. с синхронизаторами на II, III, IV и V передачах, передат. числа: I-7,44; II-4,10; III-2,29; IV-1,47; V-1,00; ЗХ-7,09. Карданная передача-два последовательных вала с промежуточной опорой. Главная передача — одинарная гипоидная, передат. число 6,33. Может устанавливаться ведущий мост с двойной коническо-цилиндрической главной передачей с передат. числом 6,32.

Колеса и шины.

Колеса — дисковые, обод 7,0-20, крепление на 8 шпильках. Шины 9.00R20 (260R508) мод. И-Н142Б-1 или 0-40БМ-1, Допускается установка шин мод. И-252Б или ВИ-244. Давление воздуха, кгс/см. кв.: ЗИЛ-431410 — шины И-Н142Б-1 и О-40БМ-1 — передние — 4,0, задние — 6,3; шины И-252Б и ВИ-244 — передние — 3,0, задние — 5,8; ЗИЛ-431510 — шины И-Н142Б-1 и О-40БМ-1 — передние — 4,5, задние — 5,3; шины И-252Б и ВИ-244 — передние — 3,5, задние — 5,8. Число колос 6+1.

Подвеска.

Передняя — на двух полуэллиптических рессорах с задними скользящими концами и амортизаторами; задняя — на двух основных и двух дополнительных полуэллиптических рессорах, концы дополнительных рессор и задние концы основных — скользящие.

Тормоза.

Рабочая тормозная система — с барабанными механизмами (диаметр 420 мм, ширина передних накладок 70, задних — 140 мм, разжим кулачковый) с двухконтурным пневматическим приводом, с регулятором тормозных сил. Тормозные камеры: передние — типа 16, задние — типа 24/24 с пружинными энергоаккумуляторами. Стояночный тормоз — на тормоза задних колес от пружинных энергоаккумуляторов, привод — пневматический. Запасная тормозная система — совмещена со стояночной. Привод тормозов прицепа — комбинированный (двух- и однопроводный). По заказу на автомобилях может устанавливаться тормозной привод без разделения по осям и однопроводным приводом тормозов прицепа (тормоза автомобиля ЗИЛ-130-80). Имеется спиртовой предохранитель против замерзания конденсата.

Рулевое управление.

Рулевой механизм — винт с шариковой гайкой на циркулирующих шариках и поршень-рейка, зацепляющаяся с зубчатым сектором вала сошки, гидроусилитель — встроенный, передат, число 20, давление масла в усилителе 65-75 кгс/см. кв.

Электрооборудование.

Напряжение 12 В, ак. батарея 6СТ-90ЭМ, генератор 32.3701 с регулятором напряжения 201.3702, стартер СТ230-К1, распределитель зажигания 46.3706 с центробежным и вакуумным регуляторами, катушка зажигания Б114-Б, транзисторный коммутатор ТК102-А, свечи зажигания А11. На часть автомобилей может устанавливаться бесконтактная система зажигания. Топливный бак — 170л, бензин А-76; система охлаждения — 26л, вода или тосол — А40, А65; система смазки двигателя — 8,5 л, всесезонно до минус 30°С масло М-6/ 10В (ДВ-АСЗп-10В) и М-8В, при температурах ниже минус 30°С — масло АСЗп-6 (М-4/6В); гидроусилитель рулевого управления — 2,75 л, всесезонно масло марки Р; коробка передач — 5,1 л, всесезонно масло ТСп-15К, заменитель — масло ТАП-15В, при температурах ниже минус 30°С масло ТСп-10; картер гипоидной главной передачи — 10,5 л, масло для гипоидных передач всесезонно ТСп-14 гип, при температурах ниже минус 30°С масло ТСз-9гип; картер двухступенчатой главной передачи — 4,5 л, масло для коробки передач; амортизаторы — 2×0,41 л, жидкость АЖ-12Т; бачок омывателя ветрового стекла — 2,7 л, жидкость НИИСС-4 в смеси с водой; предохранитель против замерзания конденсата — 0,2 л, этиловый спирт.

Массы агрегатов автомобиля ЗИЛ-431410 (в кг)

Силовой агрегат в сборе — 640; двигатель — 500; коробка передач (без тормозного механизма стояночного тормоза) — 98; радиатор системы охлаждения — 20; карданный вал — 36; задний мост в сборе с тормозными механизмами — 477; передний мост в сборе с тормозными механизмами — 243; рессоры: передняя — 37; задняя — 70; дополнительная — 25; колесо с шиной — 93; рама с буфером и буксирным устройством — 430; кабина — 280; оперение (облицовка с крыльями и брызговиками, капот) — 70; платформа — 580.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ЗИЛ-431410 ЗИЛ-431510
Грузоподъемность, кг 6000 6000
Снаряженная масса, кг 4175 4550
В том числе:
на переднюю ось 2005 2140
на заднюю ось 2170 2410
Полная масса, кг 10400 10775
В том числе:
на переднюю ось 2510 2845
на заднюю ось 7890 7930
Полная масса прицепа, кг 80001 80001
Макс. скорость автомобиля, км/ч 90 90
То же, автопоезда 80 80
Время разгона автомобиля до 60 км/ч, с 37 37
Макс. преодолеваемый подъем автомобилем, % 31 31
То же, автопоездом 16 16
Выбег автомобиля с 50 км/ч, м 750 750
Тормозной путь автомобиля с 50 км/ч, м 25 25
То же, автопоезда 26,5 26,5
Контрольный расход топлива, л/ 100 км, автомобиля:
при 60 км/ч 25,8 25,8
при 80 км/ч 32,2 32,2
То же, автопоезда:
при 60 км/ч 33 33
при 80 км/ч 43 43
Радиус поворота, м:
по внешнему колесу 8,3 9,5
габаритный 8,9 10,1

Двигатель ЗИЛ 130 (508) устанавливался на грузовые автомобили ЗИЛ-130 и ЗИЛ-131. Конструкция двигателя ЗИЛ 130 имела много общих черт с двигателем представительской модели ЗИЛ-111, но в целом модели двигателей имели малую степень унификации. Двигателю уменьшили объем до 6 литров, установили двухкамерный карбюратор и снабдили ограничителем оборотов. Семилитровые двигатели носят название ЗИЛ-375 и используются на грузовых автомобилях Уральского автомобильного завода. Увеличение объема достигнуто за счет увеличения радиуса цилиндров до 108мм, ход поршня 95 мм при этом сохранился.

Сколько масла заливать в двигатель зил 130

Пропало давление, насос менял, втулки на распреде менял, масло менял. Не знаю, что делать. Подскажите.

Alexey (Demetres) Александр, https://zil131.net/forum/index.php? sid=e9b0def1736e5ba..

Vladimir (Karttikeya) Проверь датчик давления масла

Читайте также: РД 34.10.104 (СО 153-34.10.104) Методика по разработке нормативов потребности в резервном оборудовании и запасных частях для ремонтного обслуживания энергосистемы: /Утв. Минэнерго СССР 27.12.79

Vladimir (Karttikeya) Редукционный клапан. Клапан на центрифуге.

Tags: Сколько масла заливать в двигатель зил 130

ЗИЛ-130 | Автор темы: ъ

Ребята сёдня менял масло в заднем мосту на 130 ом, короче нижняя пробка сливная, а заливная с боку? же? такая длинная см 8-10? правильно? и ещё вопрос сколько масла объём в мосту? залил 5 мало, сколько там объём?

Андрей (Iruka) Заливай по уровню заливного отверстия. Куда у тебя 5 литров уместилось? там вроде чуть больше 3 литров.

Александр (Menachem) В гипоидном 10 литров

ъ (Aleric) а слил я около 8 ми наверно!, как выглядит пробка? мож я не ту выкрутил? объясню где находиться? я выкрутил ее с водительской стороны, т.е залез под зил и где кардан прикручиваеться, рядом почти на редукторе по середине, но не сзади чулка

Андрей (Iruka) Всё правильно сделал. Заливай по уровню и не парься!

ъ (Aleric) Спасибо Андрей! вроде всё понятно но бывает загвоздка, она длинная! это сама пробка? и контрагаеться гайкой да?

Андрей (Iruka) Не знаю.

Андрей (Iruka) https://avto-zil130.ru/shassi-zil-130/71-zadniy-most-zil-130-kardannaya-peredacha? start=2

Андрей (Iruka) Масло заливают через заливное (смотровое) отверстие в верхней стенке картера главной передачи, закрываемое пробкой, до появления течи масла из открытого контрольного отверстия в задней крышке картера моста. Сливают отработанное масло после предварительного прогрева агрегата через сливное отверстие. Заливное отверстие при этом должно быть открыто.

Андрей (Iruka) https://interdalnoboy.com/pro-zil-130/agregati-shassi/zadniy-most.html

ъ (Aleric) я оказываеться выкрутил болт регулировочный, шестерни какой то, чё теперь делать? боюсь регулировку сбил! как быть.

Андрей (Iruka) Закрути на место.

ъ (Aleric) а как до каких пор? он ещё и контрагаеться

Павел (Cidra) Вообще сливная пробка находится снизу на чулке по середине я неделю назад мост менял.

Александр (Menachem) контрольная пробка есть

Синтетическое масло в движок советской эпохи — чем чревато — форум …

Кто заливал современные синтетические моторные масла SAE 5w40 в движки типа А-41, СМД-66, ЗИЛ-130 и т.д., расскажите, как оно …. в изношенном двигатели происходит быстрее или интенсивнее,появляется …

Подбор масла в двигатель ЗИЛ-130 — Выбор моторного масла — Форум …

Страница 1 из 2 — Подбор масла в двигатель ЗИЛ-130 — отправлено в Выбор … Можно ли его лить в бензиновый мотор или нет, нигде …

Показать все / написать / или закрыть комментарий(ии)

Характеристики двигателя ЗИЛ 130

Параметр Значение
Конфигурация V
Число цилиндров 8
Объем, л 6,0
Диаметр цилиндра, мм 100
Ход поршня, мм 95
Степень сжатия 6,5
Число клапанов на цилиндр 2 (1-впуск; 1-выпуск)
Газораспределительный механизм OHV
Порядок работы цилиндров 1-5-4-2-6-3-7-8
Номинальная мощность двигателя / при частоте вращения коленчатого вала 110,4 кВт — (150 л.с.) / 3200 об/мин
Максимальный крутящий момент / при частоте вращения коленчатого вала 401,8 Н м / 1800-2000 об/мин
Система питания Карбюраторная подача топлива, карбюратор К-88А, двухкамерный, с ускорительным насосом и экономайзером
Рекомендованное минимальное октановое число бензина 76
Экологические нормы Евро 0
Вес, кг 440

Проектирование и испытание V-образных двигателей

Первый V-образный двигатель ЗИС-ЭПЗ (рис. 2), построен­ный на заводе им. И. А. Лихачева, предназначался для усовершен­ствованной модификации легкового семиместного автомобиля ЗИС-110, для которого требовался двигатель большой мощности с относительно малыми габаритными размерами. Так как при проектировании двигателя ЗИЛ-130 был широко использован опыт создания двигателя ЗИС-ЭПЗ, ниже приведены его основ­ные данные и результаты испытаний.

Основные данные двигателя ЗИС-ЭПЗ Тип Двигателя — V-образный, восьмицилиндровый, четырехтактный, с жидкостным охлаждением Рабочий объем в л. — 6 (5,969) Диаметр цилиндра в мм — 100 Ход поршня в мм — 95 Отношение хода поршня к диаметру ци­линдра — 0,95 Степень сжатия — 7,3 Максимальная мощность в л. с. и соот­ветствующая ей частота вращения в об/мин. — 180/4000 Максимальный крутящий момент в кгс-м и соответствующая ему частота вра­щения в об/мин — 44/1800 Минимальный расход топлива в г/(л. с. ч) — 220 Литровая мощность в л. с./л — 30 Максимальное среднее эффективное да­вление в кгс/см2 — 9,25 Средняя скорость поршня в м/с — 12,7 Масса двигателя в кг — менее 400 Порядок работы двигателя — 1—5—4—2—6—3—7—8

Рекомендуется к прочтению  Текст книги «Грузовые автомобили. Ведущие мосты»

В двигателе ЗИС-ЭПЗ была применена полусферическая пол­ностью обработанная камера сгорания с клапанами, оси которых расположены в плоскости, перпендикулярной к оси коленчатого вала. В этом случае удается расположить в головке очень короткие с большим проходным сечением впускные каналы и применить клапаны большого диаметра. В результате этого обеспечивается хорошее наполнение цилиндров при большой частоте вращения и удовлетворительная очистка камеры сгорания от остаточных газов. Кроме того, значительная часть свежего заряда попадает на выпускной клапан, что приводит к некоторому его охлаждению и к лучшей подготовке смеси к сгоранию. Центральное расположе­ние свечи зажигания в камере сгорания уменьшает длину пути фронта пламени, улучшая тем самым антидетонационные свойства двигателя. Применение двухрядного V-образного расположения цилин­дров позволило сократить по сравнению с двигателем ЗИС-110, габаритную длину на 290 мм и высоту на 30 мм. Ширина дви­гателя увеличилась на 30 мм. Такое изменение габаритных раз­меров двигателя привело к снижению его массы на 18 кг (с 403 до 385 кг).

Двигатель ЗИС-ЭПЗ

Рис. 2. Поперечный разрез двигателя ЗИС-ЭПЗ

Увеличенное расстояние между осями цилиндров (124 мм вместо 106 мм у двигателя ЗИС-110) и принятое расположение клапанов позволили увеличить диаметр впускного клапана с 43 до 45,5 мм и выпускного с 36,5 до 39 мм (проходное сечение в кла­панах возросло примерно на 11%). Уменьшение хода поршня (со 118 до 95 мм) увеличило перекрытие шеек коленчатого вала с 5 до 17,5 мм и уменьшило среднюю скорость поршня с 14,2 до 12,7 м/с, несмотря на повышение номинальной частоты вращения коленчатого вала. Первый экземпляр двигателя ЗИС-ЭПЗ был укомплектован двухкамерным карбюратором МКЗ-ЛЗ, с которым он развил мак­симальную мощность 160 л. с. при п = 3500 об/мин и максималь­ный крутящий момент 41 кгс-м. при п = 2000 об/мин. Литровая мощность не превышала 27 л. с, что при степени сжатия 7,3 явно недостаточно. Характер протекания кривой мощности в диапазоне частоты вращения 3300—4000 об/мин давал основание полагать, что в этом диапазоне резко уменьшается наполнение двигателя. Дальнейшие исследования показали, что главной причиной недо­статочного наполнения в зоне номинальной частоты вращения является сопротивление карбюратора. После замены карбюра­тора МКЗ-ЛЗ карбюратором Л КЗ К-21, имеющего большие раз­меры диффузоров, увеличился крутящий момент во всем диапазоне частоты вращения скоростной характеристики на 3—3,5 кгс-м при максимальном его значении 43,5 кгс-м. Максимальная мощ­ность составляла 176 л. с. при п = 4000 об/мин. Увеличение диаметра смесительных камер карбюратора, а также входных отверстий во впускной трубе не повлияло на мощностные параметры двигателя. Изменение фаз газораспределения привело к снижению пока­зателей двигателя, что подтвердило правильность выбора опти­мальных фаз. В процессе дальнейших исследований на двигатель было уста­новлено два карбюратора К-21 с диффузорами диаметром 32,5 мм и одновременно газовый подогрев впускной трубы был заменен водяным от системы охлаждения. Эти мероприятия повысили максимальную мощность еще на 10 л. с. при неизменном макси­мальном крутящем моменте.

Испытания двигателя Двигатель подвергался также испытаниям на надежность, в ре­зультате которых было установлено следующее: — тепловой зазор между поршнем и цилиндром и овальность юбки поршня недостаточны для нормальной работы двигателя на напряженных режимах. Увеличение овальности юбки путем уменьшения ее диаметра в сечении под углом 45° к оси пальца на 0,12 — 0,3 мм устранило задиры поршня; — трещины в днищах поршней являлись следствием недоста­точной жесткости самого днища и малой прочности алюминиевого сплава АЛ10В. — разрушение вкладышей коренных подшипников, изгото­вленных из сталебаббитовой ленты, было усталостным; — каналы подвода масла к направляющим втулкам клапанов не обеспечивали нужного количества смазки.

Рис. 3. Расположение газовых каналов в головке двигателя ЗИС-ЭПЗА

В связи с составлением технического задания на проектирова­ние нового городского автобуса большой вместимости (75 пасса­жиров) на базе двигателя ЗИС-ЭПЗ с максимальным использова­нием его деталей был спроектирован восьмицилиндровый двига­тель ЗИС-Э113А с рабочим объемом 7 л. Повышение рабочего объема было достигнуто за счет увеличения диаметра цилиндра и хода поршня (соответственно до 105 и 100 мм). Было очевидно, что модификация ЗИС-ЭПЗА, спроектированная на базе двига­теля для легкового автомобиля, не будет иметь требуемой долго­вечности при установке на городской автобус. Однако постройка и испытание такого двигателя позволили получить его скоростную характеристику и использовать ее при разработке основных пара­метров городского автобуса большой вместимости. Проведенная конструктивная разработка и испытания двига­теля ЗИС-Э113 с полусферической камерой сгорания и с клапанами, расположенными в плоскости, перпендикулярной к оси коленча­того вала, показали, что этот двигатель имеет определенные недо­статки, а именно: — большая ширина головок цилиндров и, следовательно, большая их масса; — удвоенное число осей коромысел; — большие стойки коромысел, необходимые для установки двух осей в каждой головке; — недостаточный обдув свечи зажигания и трудность ее обслу­живания из-за расположения в глубоком колодце; — увеличение октанового числа топлива вследствие малой турбулизации заряда в камере сгорания. Указанные недостатки, в какой-то мере допустимые при малом выпуске двигателей и установке их на легковых автомобилях, при увеличении выпуска и оборудовании этими двигателями автобусов становятся не только нежелательными, но и недопустимыми. Поэтому для нового двигателя была выбрана шатровая, полностью обработанная камера сгорания с клапанами, расположенными в одной плоскости, параллельной оси коленчатого вала (рис. 3). Это позволило уменьшить ширину и массу головки цилиндров, в результате чего габаритная ширина двигателя сократилась на 59 мм (с 762 до 703 мм), а его масса — па 20 кг (с 385 до 365 кг). Масса двигателя, равная 365 кг, не является минимально воз­можной, поскольку при создании двигателя ЗИС-ЭПЗА макси­мально использовались детали двигателя ЗИС-ЭПЗ. Это во мно­гих случаях исключало возможность наиболее рационального уменьшения размеров и массы деталей нового двигателя. Шатровая камера сгорания при диаметре цилиндра 105 мм и степени сжатия 6,8, имеет кольцевой вытеснитель, обеспечиваю­щий более интенсивное, чем в полусферической камере сгорания, завихрение рабочей смеси, что дает возможность несколько снизить потребное октановое число топлива.

Основные данные двигателя ЗИС-ЭПЗА Тип двигателя — V-образный, восьмицилиндровый Рабочий объем в л — 7 (6,927) Диаметр цилиндра в мм — 105 Ход поршня в мм — 100 Отношение хода поршня к диаметру ци­линдра — 0,952 Степень сжатия — 6,8 Максимальная мощность в л. с. и соот­ветствующая ей частота вращения в об/мин — 180/3200 Максимальный крутящий момент в кгс-м и соответствующая ему частота вра­щения в об/мин — 47,5/1600 Минимальный расход топлива в г/(л. с. ч) — 240 Литровая мощность в л. с/л — 25,7 Среднее эффективное давление в кгс/см2 — 8,6 Средняя скорость поршня в м/с — 10,7 Порядок работы двигателя — 1—5—4—2—6—3—7—8 На рис. 4 дан поперечный разрез двигателя ЗИС-ЭПЗА, а на рис. 5 его скоростная характеристика. Этот двигатель с карбю­ратором МКЗ-ЛЗ имел максимальную мощность 150 л. с. при п — = 3100 об/мин и максимальный крутящий момент 44,5 кгс-м, при п = 1700 об/мин, т. е. параметры двигателя оказались ниже проектных.

Рис. 4. Поперечный разрез двигателя ЗИС-ЭПЗА

Как и в случае с двигателем ЗИС-Э113, проектные параметры двигателя ЗИС-Э113А были получены при установке впускной трубы с водяным подогревом и двух карбюраторов ЛКЗК-21 с диф­фузорами диаметром 29,5 мм. Двигатель развил мощность 176 л. с. при п = 3300 об/мин и крутящий момент 47,5 кгс-м при п — = 1600 об/мин. В табл. 2 приведены основные данные двигателей ЗИС-ЭПЗА и американских двигателей Ле Руа и Рио, сконструированных специально для грузовых автомобилей (в большинстве случаев американские фирмы, производящие грузовые автомобили, при­меняли на них дефорсированные модификации V-образных дви­гателей легковых автомобилей). При испытаниях двигателя ЗИС-Э113А были отмечены тре­щины на днищах поршней, выкрашивание биметаллических вкла­дышей подшипников коленчатого вала, износ шеек коленчатого вала, питтинг на опорной поверхности толкателей и отсутствие вращения толкателей во время работы двигателей. Вследствие повышенного расхода масла через отверстия в коромыслах кла­панов в камеру сгорания поступало значительное количество масла, что приводило к образованию толстого слоя нагара на элементах деталей, находящихся в камере сгорания. Уменьшить расход масла через отверстия в коромыслах при помощи жиклеров не удалось.

Техническое обслуживание (ТО) ходовой части автомобиля

Техническое обслуживание ходовой части

При ЕО проверяют состояние рамы, рессор, колес.

При ТО-1 проверяют люфт подшипников ступиц передних колес; контролируют состояние амортизаторов, крепления стремянок, пальцев рессор, колес; проверяют состояние шин и давление воздуха в них; смазывают шарниры ходовой части автомобиля.

При ТО-2 проверяют состояние балки переднего моста; не перекошены ли передний и задний мосты; крепление хомутиков рессор и амортизаторов; состояние дисков колес.

Техническое обслуживание ходовой части автомобиля включает:

  • периодическую проверку и регулировку углов установки передних колес
  • проверку зазоров в подшипниках ступиц передних и задних колес и шкворневых соединениях передней подвески
  • проверку состояния рамы и рессорной подвески, включая амортизаторы
  • проверку состояния шин и создание нормального внутреннего давления воздуха в них
  • крепление и смазку деталей ходовой части

Углы установки передних колес

Рис. Углы установки передних колес

Проверка установки передних колес автомобиля

Проверка установки передних колес автомобиля заключается в замерах угла схождения колес, угла а развала колес, углов р поперечного наклона и у продольного наклона шкворня.

Поддержание оптимальных углов установки управляемых колес обеспечивает нормальную работу переднего моста, стабилизацию управляемых колес, устойчивость и управляемость автомобиля, уменьшение износа шин и деталей передней оси, а также снижение расхода топлива.

Углы установки управляемых колес современных отечественных автомобилей колеблются в следующих пределах: угол схождения колес составляет от +3′ до +45′. На практике вместо угла б используют линейную величину схождения колес, определяемую как разность расстояний А и Б, замеренную в горизонтальной плоскости, проходящей через центры обоих колес при нейтральном их положении. Линейная величина схождения составляет от 1,5 до 3,5 мм для легковых и от 1,5 до 12 мм для грузовых автомобилей; угол а развала колес равен от —30′ до +30′ для легковых и от +45′ до +1°30′ для грузовых автомобилей. Этот угол считается положительным при наклоне колеса наружу и отрицательным при наклоне внутрь; угол поперечного наклона шкворня составляет от 5°30′ до 7″50′ для легковых и от 6 до 8° для грузовых автомобилей, а угол продольного наклона шкворня — от 0° до 1°47′ для легковых и от 1° до 3°30′ для грузовых автомобилей. Полный контроль углов установки передних колес производят только на легковых автомобилях, имеющих независимую подвеску передних колес и низкое давление воздуха в шинах. В этом случае даже небольшие (15’—20′) отклонения от нормы углов развала и наклона шкворня значительно влияют на износ шин и ухудшают устойчивость автомобиля при движении. У грузовых автомобилей ограничиваются проверкой величины схождения передних колес и зазоров в шкворневых соединениях н подшипниках ступиц колес.

Углы установки колес автомобилей проверяют при помощи стендов и переносных приборов.

По принципу действия стенды подразделяются на механические, оптические, оптико-электрические и электрические, а переносные приборы — на механические, жидкостные и оптикоэлектрические.

Перед контролем углов установки колес автомобиля проверяют и доводят до нормы давление воздуха в шинах, осматривают детали ходовой часта и рулевого управления, подтягивают крепления, регулируют и заменяют неисправные детали. В случае необходимости регулируют затяжку подшипников ступиц передних колес, устраняют излишние зазоры в сочленениях рулевых тяг, крепят картер рулевого механизма и доливают жидкость в амортизаторы.

Телескопическая (раздвижная) линейка для контроля схождения передних колес

Наиболее простым прибором для контроля схождения передних колес является телескопическая (раздвижная) линейка.

Линейка для проверки углов схождения передних колес автомобиля

Рис. Линейка для проверки углов схождения передних колес автомобиля:
а — линейка; б — установка линейки;
1 — подвижная труба; 2 — фиксирующий винт; 3 — шкала; 4 — неподвижная труба; 5 — промежуточная труба; 6 — фиксатор; 7 — удлинитель; 8 — наконечник; 9 — цепочка; 10 — пружина; 11 — стрелка

Линейку устанавливают между колесами перед передней осью в горизонтальном положении так, чтобы конические упоры находились в одной вертикальной плоскости а-а с краями ободов, расположенными на уровне центров колес; при этом цепочки на ее концах должны касаться пола. Шкалу передвигают до совмещения указателя с нулевым делением, затем автомобиль перемещают вперед до тех пор, пока линейка не займет симметричное положение за передней осью. Перемещение шкалы относительно неподвижного указателя позволяет определить линейную величину схождения колес.

При измерениях линейкой необходимо иметь в виду, что автомобильные заводы в технических характеристиках на автомобили относят размеры, определяющие величину схождения колес, к точкам колес, расположенным на внутреннем крае обода или на боковой поверхности шины на высоте центра колеса. Пользование данными автомобильных заводов при измерении линейкой приводит к неизбежным ошибкам, достигающим 30—35%.

Поэтому при замерах линейкой ГАРО необходимо руководствоваться контрольными величинами схождения колес, указанными для данной линейки.

Угол схождения колес регулируют изменением длины поперечной рулевой тяги.

Схема замера схождения передних колес

Рис. Схема замера схождения передних колес: АА’ — по методу Автомобильного завода им. Лихачева; ББ’ — по методу Горьковского автомобильного завода; ВВ’ — при замере линейкой ГАРО

Схема независимой подвески колес автомобиля

Рис. Схема независимой подвески колес автомобиля

Угол развала колес у автомобилей с неразрезной передней осью не регулируют. Отклонение его от нормального значения указывает на износ шкворней и втулок шкворней или на изгиб оси.

Рекомендуется к прочтению  Ремонт подвески соболь своими руками

У автомобилей с независимой подвеской колес угол а регулируют при помощи эксцентриковой втулки и резьбового пальца 2, соединяющего стойку 3 подвески с нижним рычагом 1.

В аналогичных конструкциях подвесок, имеющих эксцентриковые втулки с резьбой, этими втулками регулируют также продольные углы наклона шкворней.

Независимо от конструкции прибора или стенда принцип определения углов развала колеса и наклона шкворня одинаков.

Угол а развала колеса замеряют двумя способами: как геометрический угол между средней плоскостью колеса и вертикалью или как угол между осью поворотной цапфы и горизонтальной плоскостью. Так как физически средней плоскостью колеса и осью поворотной цапфы для непосредственного замера угла воспользоваться нельзя, то в качестве базы для его измерения практически наиболее часто берут боковину шины или закраину обода колеса.

Углы наклона шкворня измеряют на основании установленных геометрических соотношений и закономерностей изменения угла развала колеса в зависимости от его поворота.

Способы замера угла развала переднего колеса

Рис. Способы замера угла развала переднего колеса

Переносной жидкостный прибор (модель М-2142) для определения всех углов установки передних колес

Переносный жидкостный прибор для проверки углов установки передних колес автомобиля

Рис. Переносный жидкостный прибор для проверки углов установки передних колес автомобиля: 1 — стержень; 2 — скоба; 3 — стрелка измерителя углов поворота колес

Переносной жидкостный прибор (модель М-2142), при помощи которого могут быть определены все углы установки передних колес автомобиля, состоит из двух самостоятельных частей:

  • ватерпаса А с двойным уровнем
  • измерителей углов поворота колес В, смонтированных в ящиках (для правого и левого колес)

Ватерпас прибора М-2142 для определения углов установки колес

Рис. Ватерпас прибора М-2142 для определения углов установки колес

Ватерпас имеет на лицевой стороне два взаимно перпендикулярных уровня с тремя шкалами Шкала 3 служит для определения угла поперечного наклона шкворня, шкалы 5 и 6 — соответственно для определения углов продольного наклона шкворня и развала колеса. На обратной стороне корпуса прибора расположены два установочных уровня без шкал.

Для определения угла развала колес автомобиль устанавливают на горизонтальной площадке пола; передние колеса при этом должны занимать нейтральное положение (соответствующее движению по прямой). Прибор с уровнями укрепляют при помощи зажима 2 на гайке 1 диска или на ступице колеса в горизонтальном положении оборотной стороной вверх.

Схема определения угла развала колеса

Рис. Схема определения угла развала колеса

Схема определения угла поперечного наклона шкворня

Рис. Схема определения угла поперечного наклона шкворня: 1—уровень прибора; 2—шкворень

Кромка корпуса прибора со стороны шкалы 3 должна быть параллельна диску колеса. Поворачивая прибор на шарнирной головке зажима, устанавливают его так, чтобы пузырьки 4 уровней расположились в прорезях, имеющихся на оборотной стороне прибора, и затягивают винт шарнирной головки. Затем передвигают автомобиль вперед или назад настолько, чтобы колесо повернулось на пол-оборота, т. е. на 180°, по отношению к первоначальному положению. Как видно из рисунка, после перекатывания колеса плоскость уровня составит с горизонтальной плоскостью угол, в два раза больший угла а. Смещение пузырька 4 уровня указывает на шкале 6 действительный угол развала колес.

Угол поперечного наклона шкворня измеряют с использованием зависимости изменения угла, составляемого прямой, расположенной в горизонтальной плоскости, параллельной плоскости диска колеса. Вначале уровень 1 прибора располагают горизонтально и параллельно плоскости диска колеса, затем поворачивают его вокруг оси шкворня 2. На рисунке колесо условно повернуто на 90°. В этом случае уровень 1, оставаясь параллельным плоскости колеса, займет наклонное положение к горизонту под углом B.

При замере угла продольного наклона шкворня уровень располагают перпендикулярно плоскости диска колеса. Если условно повернуть колесо из нейтрального положения на угол 90°, уровень отклонится от горизонтали на угол, равный y.

Поскольку осуществить в действительности поворот колеса на 90 или 180° не представляется возможным, то при пользовании прибором колеса поворачивают на меньший угол (40°); при этом уровни будут отклоняться на угол, несколько меньший B или у, но шкала прибора градуируется на значения действительных углов.

Углы наклона шкворня указанным выше прибором определяют следующим образом. Колеса, установленные на поворотные диски, должны находиться в нейтральном положении. Ящики со шкалами придвигают к колесам так, чтобы стержни 1 со скобой легли на шину колеса ниже ступицы, а стрелка измерителя углов поворота колес установилась против нулевого деления шкал. Затем колесо поворачивают в одну сторону на 20° по указателю шкалы левого колеса и затормаживают. После этого ватерпас А устанавливают так, чтобы пузырьки поперечного и продольного уровней находились на нулевом делении, а кромка ватерпаса со стороны поперечного уровня была параллельна колесу.

Схема определения угла продольного наклона шкворня

Рис. Схема определения угла продольного наклона шкворня: 1 — прибор; 2 — шкворень

Установив прибор, поворачивают колеса в другую сторону от нулевого деления шкалы измерителя угла поворота на 20° и по шкалам 3 и 6 определяют углы наклонов шкворня данного колеса. В том же порядке определяют углы установки другого колеса. Одновременно по положению стрелок измерителей и шкалам можно определить соотношение углов поворота колес. Неправильное соотношение углов поворота приводит к повышенному износу шин.

Оптический стенд стационарного типа для контроля установки передних колес

На рисунке представлена схема оптического стенда стационарного типа для контроля установки передних колес. На этом стенде все углы установки измеряют оптическим методом за исключением угла поперечного наклона шкворня, который определяют по уровню.

Оптическая система стенда состоит из стойки 3 с измерительным микроскопом 4 и наклонным зеркалом 2, площадки с измерительной шкалой 1 и зеркального отражателя 5, устанавливаемого на переднем колесе, к ободу которого он крепится при помощи кронштейна 7. Зеркальный отражатель состоит из трех зеркал. Среднее зеркало располагается параллельно плоскости колеса, а два других наклонены к нему в вертикальной плоскости под углом 20°. На верхней стороне рамки зеркального отражателя установлен уровень 6, по шкале которого определяют поперечный наклонтнкворней колес автомобиля. Микроскоп 4 крепится на призматических направляющих, допускающих его перемещение вдоль оптической оси, перпендикулярной продольной оси стенда. На линзе объектива зрительной трубки микроскопа 4 нанесены две взаимно перпендикулярные линии I—I и II—II.

Схема оптического стенда ГАРО

Рис. Схема оптического стенда ГАРО модели 1119 для замера углов установки передних колес автомобиля

На площадке с измерительной шкалой 1 имеются также две взаимно перпендикулярные линии с делениями (шкалы), из которых вертикальная служит для замера углов развала, а горизонтальная — углов схождения и углов поворота колес. Продольный угол наклона шкворня, определяемого по изменению угла развала при повороте переднего колеса вправо и влево на 20″, замеряется по вертикальной шкале. Поперечный угол наклона шкворня измеряется по уровню 6 в результате изменения его наклона также при повороте колес вправо и влево на 20° от среднего положения. Колеса при измерении углов их установки и правильности углов поворота устанавливаются на поворотные диски 8.

Принцип измерения на оптическом стенде заключается в определении угла наклона зеркального отражателя установленного параллельно плоскости колеса по величине смещения изображения крестообразной шкалы относительно визирной сетки микроскопа или двух пересекающихся линий, нанесенных на объективе его зрительной трубы.

При определении угла развала колесо поворачивают в положение, при котором вертикальная линия объектива микроскопа совпадает с вертикальной измерительной шкалой; тогда горизонтальная линия I — I объектива микроскопа покажет по шкале развала угол развала колеса.

При измерении угла развала колеса по видимому в окуляре микроскопа 4 делению шкалы получаем двойной угол. Увеличение угла отражения, видимое на шкале, по сравнению с действительным наклоном зеркала или колеса повышает точность замера.

Угол схождения колес определяют при той же установке стенда, что и для замера угла развала, т. е. при установке одного колеса (правого или левого) параллельно продольной оси автомобиля. В этом случае второе колесо поворачивается на двойной угол схождения колес.

На рисунке г показана схема замера схождения колес автомобиля, имеющего переднее расположение рулевой трапеции. Смещение вертикальной визирной линии перекрестья окуляра микроскопа вправо (линия II—II) или влево относительной нулевой точки горизонтальной шкалы измерительной площадки указывает соответственно на отрицательное или положительное схождение колес.

Угол продольного наклона шкворня замеряют при заторможенных колесах поворотом колеса вначале вправо па 20° до совпадения вертикальной визирной линии микроскопа с нулем шкалы схождения, затем влево так же на 20° до совпадения вертикальной линии микроскопа и шкалы. По шкале развала замеряют значения угла а в двух положениях и по разности этих углов находят угол у.

Угол поперечного наклона шкворня определяют по уровню, установленному на рамке зеркального отражателя. Для этого, повернув колесо на 20° влево, устанавливают уровень на нуль его шкалы, после чего поворачивают колесо на 20° вправо и по шкале уровня отсчитывают значение угла B.

Механические стенды

Более простыми и падежными являются механические стенды, получившие в настоящее время наибольшее распространение. Эти стенды имеют металлическую эстакаду, на которую устанавливается автомобиль, поворотные круги под передние колеса и две измерительные головки со шкалами. В механических стендах обычно замеряют только три угла из пяти: развал, схождение и соотношение поворота колес.

На рисунке показан общий вид механического стенда. Измерительная головка 1 установлена па специальной раме 4, расположенной поперек осмотровой канавы. В средней части рамы имеются поворотные диски 2 и гидравлические домкраты 3.

Общий вид механического стенда для замера углов установки колес легковых автомобилей

Рис. Общий вид механического стенда для замера углов установки колес легковых автомобилей

Поворотные диски снабжены шкалой 5 и указателем 6, позволяющими проверять соотношение углов поворота передних колес. Домкраты служат для вывешивания колес при определении их точек равного биения с целью более точного замера углов. Измерительная головка имеет шток 1, продольно перемещающийся в конусных втулках 2. На конце штока закреплен валик 8, вокруг которого поворачивается штанга 10. По штанге перемещаются упорные наконечники 9, соприкасающиеся при замере углов с боковой поверхностью шины или закраинами обода колеса. Штанга 10, поворачиваясь со штоком 1, может устанавливаться в горизонтальном и вертикальном положениях.

Поворот штанги относительно валика 8 через рычажный механизм 4, 5 и 6 передается на стрелку 3, показывающую по шкале замеренный угол.

Для измерения углов схождения штангу устанавливают в горизонтальном положении и придвигают вместе со штоком к колесу до соприкосновения с ним упорных наконечников. При измерении углов развала штангу устанавливают в вертикальном положении. Угол поворота штанги относительно оси 8 фиксируется стрелкой 3 на шкале 7. Соотношение углов поворота колес автомобиля определяют по шкалам поворотных дисков. Необходимо иметь в виду, что в заводских инструкциях углы установки передних колес легковых автомобилей отечественного производства указаны с учетом полной их нагрузки.

На легковых автомобилях с независимой подвеской передних колес при отсутствии нагрузки углы развала и поперечного наклона шкворней значительно уменьшаются. Поэтому во избежание ошибок при регулировке установки передних колес у негруженых автомобилей необходимо корректировать значение регулируемых углов в сторону увеличения минимального значения угла (например, для автомобилей ГАЗ-21 «Волга» на 20″).

Измерение радиального и осевого зазоров в шкворнях

Износ в шкворневом соединении передних колес грузовых автомобилей контролируют по величине радиального и осевого зазоров.

Радиальный зазор (Лр ) в шкворневом соединении определяют по перемещению поворотной цапфы относительно шкворня при подъеме и опускании домкратом передней оси (до опоры колеса на пол).

Как видно из схемы, угол развала колеса при опускании на пол уменьшается за счет зазоров, образуемых вследствие износа шкворня и втулки.

Измерительная головка стенда

Рис. Измерительная головка стенда

Перемещение цапфы фиксируют при помощи индикатора 1, устанавливаемого на балке передней оси при помощи зажима 3. Стержень индикатора соприкасается с нижней частью опорного тормозного диска 2. Поскольку диаметр диска примерно в два раза больше длины шкворня, индикатор показывает радиальный зазор вдвое больший действительного, что повышает точность замера. Радиальный зазор для грузовых автомобилей (типа ЗИЛ и ГАЗ ) не должен превосходить 0,75 мм.

Осевой зазор замеряют плоским щупом, вставляемым между верхней проушиной цапфы и кулаком передней оси.

Увеличенный зазор между обоймой подшипника и его гнездом в ступице и степень затяжки подшипников ступиц колес может быть выявлен покачиванием колес в поперечной плоскости после устранения люфта в шкворневом соединении. При регулировке зазора в подшипнике его гайку затягивают ключом с динамометрической рукояткой с определенным усилием. При использовании для регулировки простого ключа гайку предварительно затягивают до начала торможения колеса в вывешенном состоянии, а затем отвертывают на 1/3 — 1/2 оборота до начала свободного вращения колеса. Правильно отрегулированное колесо должно от толчка рукой вращаться не менее чем на 8—10 оборотов.

Изменение положения переднего колеса

Рис. Изменение положения переднего колеса при наличии зазора в шкворневом соединении: а — в поднятом состоянии; б — в опущенном состоянии

Проверка динамической балансировки колес

У легковых автомобилей необходимо периодически проверять динамическую балансировку колес.

При контроле технического состояния шин их осматривают, проверяют давление воздуха, подкачивают шины, удаляют острые предметы, застрявшие в протекторе (стекло, гвозди и т.п.), проверяют зазор между сдвоенными шинами (20—30 мм для шин малого размера и 40—50 мм — большого размера), проверяют состояние вентиля и обода колеса (наличие вмятин, заусенцев и коррозии). Выпуск на линию автомобилей, у которых давление воздуха в шинах не соответствует норме, не допускается.

Для измерения давления воздуха в шинах применяют манометры поршневого или пружинного типа. Манометр поршневого типа прижимают наконечником 1 к вентилю камеры, утапливая золотник. Из камеры воздух поступает по каналу наконечника под поршень 2 и перемещает его, сжимая тарированную пружину 3. Вместе с поршнем перемещается латунный цилиндрический окрашенный в красный цвет экран 4, скользящий по направляющей трубке 5. При отнятии манометра от вентиля поршень под действием пружины 3 возвратится в исходное положение, а экран останется на месте.

В верхней части корпуса манометра имеется окно, закрытое прозрачным целлулоидом, на котором нанесена шкала делений 6. По кромке экрана 4 и шкале 6 определяют давление воздуха в шине. Точность показаний манометра — в пределах цены одного деления шкалы (0,1 или 0,2 кГ/см2).

Манометр поршневого типа

Схема наконечника с манометром для накачки шин воздухом

Рис. Схема наконечника с манометром для накачки шин воздухом:
1 — кнопка; 2 и 10 — пружины; 3, 6 и 8 — седла; 4 и 9 — клапаны; 5 — манометр; 7 и 11 — штуцеры

Поршневые манометры применяют преимущественно в дорожных условиях. Для контроля давления воздуха в шинах в гаражах применяют наконечники с манометром для воздухораздаточного шланга от компрессора или воздушной магистрали. Схема наконечника с манометром пружинного типа приведена на рисунке.

Рекомендуется к прочтению  Hyundai Elantra IV с пробегом: на удивление крепкий кузов и никаких сюрпризов по электрике и ходовой

При отпущенной кнопке (положение I) клапан 4 под давлением воздуха, поступающего через штуцер 7 из шланга, соединенного с шиной, а клапан 9 под действием пружины 10 и давления воздуха, поступающего через штуцер 11 из магистрали, прижимаются соответственно к седлам 3 и 8. Манометр 5 в этом случае показывает давление воздуха в шине. При нажатии кнопки 1 (положение II) до отказа воздух из воздушной магистрали поступает к шине.

При неполном нажатии кнопки 1 (положение III) клапан 9 прижмется к седлу 8, а клапан 4 будет находиться при этом в промежуточном положении. В этом положении воздух из шины может выходить наружу и давление воздуха в ней будет снижаться до момента, пока кнопка не займет своего крайнего положения (I). Это дает возможность установить требуемое давление воздуха в шине.

Сжатый воздух для накачивания шин получают из компрессорных установок, а для раздачи воздуха применяют воздухораздаточные колонки.

Воздухораздаточная колонка представляет собой устройство, состоящее из механизма (регулятора давления) контролирующего давление воздуха, до которого должна быть накачана шина, и шланга, автоматически отключающего подачу сжатого воздуха; иногда колонка имеет механизм для автоматического сматывания длинного шланга на барабан.

Автоматические регуляторы давления по принципу действия можно подразделить на пневмомеханические и электромеханические.

В качестве задающего и регулировочного устройства в регуляторах первого типа служат воздушный манометр и пружина, уравновешивающая давление воздуха, и второго типа — электроконтактный манометр. Исполнительным устройством в пневмомеханических регуляторах служит отсечный плоский или шариковый клапан, а в электромеханических — соленоидный электромагнитный клапан. Принципиальная схема регулятора первого типа показана на рисунке. Регулятор давления воздуха устанавливают в требуемое положение поворотом маховичка 1, который сжимает пружину 3; пружина 3 через толкатель 2 давит на диафрагму 4 и далее на клапан 5, который в этом случае будет находиться в открытом состоянии и пропускать воздух из воздушной магистрали в полость под диафрагму.

Схема работы регулятора давления воздуха

Рис. Схема работы регулятора давления воздуха

Поворачивая маховичок 1 при закрытом кране 6, изменяют величину открытия клапана 5 (дросселируя давление воздуха) до тех пор, пока на манометре 7 не установится требуемая величина давления воздуха. После этого открывают кран 6 и сообщают колонку с вентилем накачиваемой шины. Как только в шине будет достигнуто установленное по манометру давление воздуха, под диафрагмой регулятора возникнет избыточное давление, неуравновешиваемое пружиной; при этом диафрагма, прогибаясь вверх, сожмет пружину и освободит клапан 5, который перекроет подачу воздуха из магистрали.

Техническое обслуживание и ремонт ходовой части автомобиля ЗИЛ-130

В этой статье мы рассмотрим переднюю и заднюю подвеску автомобиля ЗИЛ-130, которая состоит из двух продольных листовых рессор и двух телескопических амортизаторов. Задняя подвеска ЗИЛ-130 состоит из двух основных и двух допол­нительных листовых рессор. Передние и задние рессоры состоят из листов Т-образного профиля и установлены на шасси ЗИЛ-130.
Техническое обслуживание подвески ЗИЛ-130 включает в себя смазывание рессорных пальцев и проверку крепления рессор и амортизаторов.

Затяжка стремянок проводиться в следующем порядке:

1) равно­мерно затянуть передние и задние гайки с моментом затяжки 250-320 Н*м.

2) проверить затяжку гаек стремянок крепления ушков передних и задних рессор.

Затяжку нуж­но проводить до того как пружинные шайбы подвески ЗИЛ-130 сожмуться. Перетяжка не желательна.

3) Заливка амортизационной жидкости в амортизатор проводиться согласно карты смазывания. Амортизационная жидкость меняется на снятом амортизаторе.

Для заливки амортизационной жидкости поставьте амортизатор вертикально и закрепите его за нижнюю проушину. Поднимите шток амортизатора в верхнее положение, после чего отверните гайку резервуара. Для заполнения рабочего цилиндра необходимо вынуть шток с поршнем и залить в цилиндр 0,41 л амортизационной жидкости, которая должна полностью его покрыть. Лишнюю жидкость сливаем в резервуар амортизатора. Сборка амортизатора проводиться в обратной последовательности. При заливке жидкости не допускается попадание грязи и песка в амортизатор, так как это может привести к быстрому и преждевременному износу.

Подвеска автомобиля ЗИЛ: а — передняя; б — задняя; 1 и 25 — передние кронштейны; 2, 12, 27 и 35 — стремянки; 3 — передняя рессора; 4 — фиксатор накладки; 5 и 8 — буфера рессоры; 6и 2(9 — накладки; 7 — амортизатор; 9 — обойма; 10 и 33 — проставки; 11 и 32— задние кронштейны; 13и 36— подкладки ушек рессор; 14и 57— ушки рессор; 15 и 38— втулки ушек; 16 и 40— пальцы рессор; 17 и 39 — масленки; 18 — резиновая втулка; 19 — палец амортизатора; 20 и 41 — сухари; 21 и 42 — пальцы сухарей; 22 и 43 — вкладыши; 23 и 44 — втулки стяжных болтов; 24 и 45 — стяжные болты; 26 — кронштейн дополнительной рессоры; 29 — дополнительная рессора; 30 — промежуточный лист; 31 — задняя рессора; 34 — подкладка стремянок.

Амортизатор зил 130 схема

КОНСТРУКЦИЯ И РАСЧЕТ АМОРТИЗАТОРОВ АВТОМОБИЛЯ ЗИЛ-130
Для гашения вертикальных колебаний колес и кузова, возникающих при движении автомобиля по неровной дороге, передняя подвеска снабжена гидравлическими телескопическими амортизаторами двойного действия вместо менее эффективных в эксплуатации и более трудоемких в производстве амортизаторов рычажного типа (с 1958 г.).

Передние подвески автомобилей ЗИЛ-130 и ЗИЛ-164 имеют примерно одинаковые параметры (табл. 53), поэтому было решено применить на автомобиле ЗИЛ-130 амортизаторы автомобиля ЗИЛ-164, у которых в связи с этим были модернизированы узлы уплотнения штока и дросселирующей системы.

На рис. 51 показан амортизатор автомобиля ЗИЛ-164 и его узлы после модернизации. Штампованная гайка 7 изготовлена из листа толщиной 3 мм (раньше штамповалась из 2-миллиметрового листа). Сальник 8 по-прежнему войлочный. Обойма 9 сальников сделана литой вместо штампованной в старой конструкции амортизатора и центрируется относительно направляющей 14 штока. Манжета 10 посажена на шток с большим натягом. Тарелка 11 и поджимная пружина 12 манжеты сохранены без изменений. Уплотнительное кольцо 13 заменено на формованное с круглым поперечным сечением вместо кольца прямоугольного сечения, нарезаемого из резиновой трубы («викель-ный» сальник). Проходное сечение седла 19 клапана увеличено по диаметру до 7 мм вместо 5 мм. Плунжер 20 клапана сжатия имеет два окна (раньше одно).

На основании расчета, исследований рабочего процесса амортизатора и проверки его эффективности в дорожных условиях был изменен клапан отдачи (рис. 52). Толщина дроссельного диска 2 была увеличена с 0,1 до 0,2 мм, а суммарная площадь

проходного сечения дроссельных отверстий — с 0,012 до 0,048 см2.

Габаритные размеры амортизатора с достаточной точностью определяются на основе энергетического баланса .

53. Параметры передних подвесок автомобилей ЗИЛ-130 и ЗИЛ-164

Рис. 51. Конструкция амортизатора автомобиля ЗИЛ-164

Прочностной расчет носит в основном поверочный характер и его выполняют после определения характеристики сопротивле-ния амортизатора, от которой зависят перепады давлений в рабочих камерах и нагрузки на детали. Для ориентировочных расчетов автомобильных телескопических амортизаторов максимальное давление в рабочем цилиндре обычно принимают равным 100 кгс/см2.

Читайте также: Обзор тракторов Нью Холланд. Основные технические характеристики. Особенности использования

Наибольшую сложность представляет расчет характеристики сопротивления амортизатора для конкретной подвески и определение параметров дросселирующей системы. К моменту создания автомобиля ЗИЛ-130 указанные вопросы были уже

в достаточной мере проработаны. Ниже представлен порядок расчета и некоторые обоснования использованной методики.

Энергия возбуждения Е, которую получает подвеска при движении автомобиля по неровной дороге, практически мало зависит от того, какие амортизаторы установлены в подвеске, если обеспечиваемый силами жидкостного и сухого трения коэффициент апериодичности колебаний не превышает практических значений этого параметра.

Таким образом, при одинаковой скорости движения автомобиля динамические прогибы рессор без амортизаторов увеличиваются в среднем в 2—3 раза, а при 50% энергоемкости амортизаторов— в 1,2—1,3 раза по сравнению с амортизаторами со 100%-ной энергоемкостью.

Вместе с тем очевидно, что сила сухого трения весьма существенно влияет на гашение колебаний и тем больше, чем меньше амплитуда колебаний и сопротивление амортизаторов. Следовательно, при расчете характеристики амортизатора необходимо учитывать действие сил сухого трения в подвеске.

Неправильный выбор сопротивления амортизатора, как и отсутствие амортизаторов в подвеске, могут привести не только к увеличению динамических прогибов рессор или к их блокиров-ке, но и к снижению средней эксплуатационной скорости движения автомобиля вследствие ухудшения плавности хода. Это обусловлено тем, что водитель может влиять на изменение колебательного режима в подвеске и плавности хода автомобиля только путем изменения скорости его движения.

При уточнении характеристики амортизаторов автомобиля ЗИЛ-164 применительно к автомобилю ЗИЛ-130 на первом этапе не ставилась задача существенного изменения характеристики клапанов. Это было связано с тем, что силу сопротивления сжатию нельзя было увеличивать, так как пружина модернизированного клапана сжатия имела минимально допустимый запас усталостной прочности (— 1,3) при регулировке по верхнему пределу, оговоренному в ТУ. В то же время возможное по соображениям прочности увеличение силы сопротивления при отдаче в этом случае привело бы к чрезмерной несимметричности характеристики. Поэтому дальнейший расчет характеристики сводится к определению коэффициента сопротивления амортизатора на дроссельном режиме при отдаче.

ЦЕНА НОВОГО И Б/У

Производство ЗИЛ 130 завершилось еще в 1986 году, тогда модель стали выпускать с новым названием – ЗИЛ 431410. При этом конструктивно и внешне грузовик мало отличался от предшественника. Полностью выпуск легендарной машины прекратился в 2010 году.

В настоящее время ЗИЛ 130 практически не используется, а подержанных вариантов на рынке очень мало. Основная масса из них имеет большой пробег и неудовлетворительное состояние.

Средняя стоимость б/у ЗИЛ 130:

  • 1988-1990 год – 70-150 тысяч рублей;
  • 1993-1995 год – 100-270 тысяч рублей.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Габаритные размеры:

  • длина – 6675 мм;
  • ширина – 2500 мм;
  • высота – 2400 мм;
  • колесная база – 3800 мм;
  • дорожный просвет – 270 мм;
  • минимальный радиус разворота – 8900 мм;
  • передняя колея – 1800 мм;
  • задняя колея – 1790 мм.

Снаряженная масса ЗИЛ 130 составляет 4300 кг, полная масса – 10525 кг. Распределение нагрузки (пустой/полная загрузка): передний мост – 2120/2625 кг, задний мост – 2180/7900 кг. Предельная масса буксируемого прицепа – 8000 кг.

ЗИЛ 130 способен развивать скорость до 90 км/час. На скорости 60 км/час тормозной пусть составляет 28 м. Среднее потребление топлива при скоростном режиме 60 км/час находится в пределах 29 л/100 км. Топливный бак автомобиля вмещает 170 л горючего.

Характеристики платформы (бортовая версия):

  • длина – 3752 мм;
  • ширина – 2326 мм;
  • высота бортов – 575 мм;
  • погрузочная высота – 1450 мм.

Сборка телескопического амортизатора ЗИЛ-130

Корпус 1 клапана сжатия ( рис. 171) закрепляют в тисках, в его гнездо устанавливают пружину 2, клапан 3 сжатия и ввертывают седло 4, Положение седла клапана должно обеспечивать открытие

клапана в пределах 1,8—2,0 мм. Устанавливают звездчатую шайбу 6 и тарелку 5 впускного клапана на ограничительную гайку 7, навертывают ее и контрят на седле 4 клапана. Легким постукиванием молотка с медным бойком по корпусу 1 клапана сжатия его запрессовывают в рабочий цилиндр 9.

Рис. 171. Детали амортизатора передней подвески:

1 — корпус клапана сжатия: 5 — пружина клапана сжатия; 3—клапан сжатия; 4— седло клапана сжатия; 5 — тарелка впускного клапана; 6 — звездчатая шайба впускного клапана; 7— ограничительная гайка впускного клапана; 8— резервуар с проушиной в сборе; 9 — рабочий цилиндр; 10— кожух; 11—шток с проушиной в сборе; 12— гайка резервуара; 13— войлочный сальник штока; 14—обойма сальника; 15—резиновый сальник штока; 16—шайба сальника; 17 — пружина; 18 — сальник гайки резервуара; 19 — направляющая штока; 20—ограничительная тарелка перепускного клапана; 21—звездчатая шайба перепускного клапана; 22—тарелка перепускного клапана; 23— поршень; 24 — дроссельный диск клапана отдачи; 25 — диск клапана отдачи; 26 — тарелка клапана отдачи; 27 — шайба клапана отдачи; 28 — пружина; 29 — регулировочная шайба клапана отдачи;

Закрепив шток 11 проушиной в тиски, собирают его в порядке, обратном разборке. При установке на шток нового поршня необходимо перед закреплением гайки 30 клапана проверить по рабочему цилиндру 9 его перемещение, которое должно быть свободным и без заеданий.

Закрепив резервуар 8 за проушину в тиски, в него устанавливают рабочий цилиндр 9 в сборе с клапаном сжатия и наполняют доверху жидкостью, сливая ее остаток в резервуар. Для амортизатора применяют веретенное масло АУ ГОСТ 1642—50 в количестве 0,335 л. Затем в рабочий цилиндр вставляют шток в сборе с поршнем, закрывают цилиндр 9 направляющей 19 штока и, аккуратно установив резиновый сальник 18 резервуара до направляющей штока, завертывают гайку 12 резервуара.

Собранный телескопический амортизатор проверяют на бесшумность работы и развиваемое сопротивление на специальной установке с ходом штока 100 мм и частотой 100±3 ходов в минуту. При этом наибольшие усилия, развиваемые амортизатором, должны быть в пределах: при ходе «отдача» 200—270 кГ, при ходе «сжатие» 30—50 кГ. Температура жидкости должна быть в пределах 15—20° С. Время испытания — 5 мин. Подтекание жидкости во время испытания не допускается.

ДВИГАТЕЛЬ

Первые версии ЗИЛ 130 комплектовались 6-цилиндровым карбюраторным мотором с V-образной схемой построения. 5,2-литровый двигатель имел мощность 135 л.с. Но тестирования показали, что функционала агрегата не хватало для выполнения задач повышенной сложности, потому начались работы по модернизации силовой установки.

Базовым для ЗИЛ 130 стал 4-тактный карбюраторный верхнеклапанный мотор ЗИЛ-130. 8 цилиндров в конструкции агрегата располагались под 90-градусным углом. Блок цилиндров изготавливался из чугуна и имел головки и поршни из алюминиевого сплава. В системе питания применялась технология принудительной подачи горючего посредством топливного насоса Б-10 с рычагом, позволяющим осуществлять подкачку бензина вручную, и двухкамерный карбюратор К-88. Жидкостная закрытая система охлаждения имела принудительную циркуляцию. Для контроля температуры использовался стандартный термостат с твердым наполнителем.

Характеристики двигателя ЗИЛ-130:

  • рабочий объем – 5,969 л;
  • номинальная мощность – 150 л.с.;
  • максимальный крутящий момент – 402 Нм;
  • степень сжатия – 6,5;
  • количество цилиндров – 8;
  • диаметр цилиндра – 100 мм;
  • рекомендованный тип топлива – бензин А-76.

С 1974 года на ЗИЛ 130 стали устанавливать 6-цилиндровый мотор ЗИЛ 157 с рядной схемой и мощностью 110 л.с. В конструкции двигателя появился экономайзер. Принудительная подпитка обеспечивалась топливным насосом. Глобальных изменений в параметрах агрегата не произошло, он продолжил работать на бензине А-72, а расход топлива сократился незначительно.

Для последних модификаций и экспортных вариантов ЗИЛ 130 также были доступны дизельные агрегаты.

Источник https://iga-motor.ru/na-zametku/zamena-masla-zil-131.html

Источник https://ustroistvo-avtomobilya.ru/podveska/tehnicheskoe-obsluzhivanie-hodovoj-chasti-avtomobilya/

Источник https://xn--86-mlcl8ace3c.xn--p1ai/remont-i-obsluzhivanie/podveska-zil-130.html

Понравилась статья? Поделиться с друзьями: