Тормозные системы автомобилей: классификация и принципы работы

Содержание

Тормозные системы автомобилей: классификация и принципы работы

Дорогие друзья водители, нам всем очень полезно знать как устроена гидравлическая тормозная система автомобиля. Но коли вы на страницах этого блога, то вы понимаете как архиважно знать всё про тормоза!

Я с трудом представляю себе, как можно управлять автомобилем без тормозов. Поехать на автомобиле без тормозов, это поступок впору сравнить, с камикадзе, который желает умереть ради великого императора. Нам это не к чему, а вот знать как устроена гидравлическая тормозная система автомобиля очень полезно.

А узнав про неё, будет ещё приятнее давить на педальку тормоза, представляя как там все движется и перетекает, проскальзывает и шоркает попискивая… Ведь мы же не согласны с утверждением — «тормоза придумали трусы»

Приступим. Для оптимального управления любым транспортным средством нужна соответствующая классу автомобиля тормозная система.

Для чего она нужна? Тут предельно понятно — для снижения скорости, для замедления, остановки и выполнения любого маневра.

А вот в случае продолжительной стоянки, особенно на склоне, для предотвращения самопроизвольного движения нужен стояночный тормоз.

Есть и другие тормозные системы. Ознакомимся с ними, с их классификацией, типами, принципом работы и конструктивными особенностями.

Пластинчатый тормоз

В тормозных механизмах которые характеризуются осевым нажатием, то усилие, которое необходимо для получения тормозного момента, действует вдоль оси тормозного вала. Конические и дисковые тормоза относятся именно к этой категории.

Особенностью дисковых (пластинчатых) тормозов с осевым нажатием является то, что их поверхность трения располагается на торце. Для того чтобы уменьшить удельное и осевое давление, в таких тормозах предусматривается установка нескольких дисков. С валом и тормозным кожухом они связаны поочерёдно.

Фиксация ряда дисков пластинчатых тормозах осуществляется в неподвижных корпусах, на шпонках, со скольжением. При этом второй ряд дисков с тормозным валом связан точно таким же образом. Когда обе группы дисков сжимаются силой, то между ними за счет возникновения силы трения создается тормозной момент.

Устройство механизма торможения

Тормозная система на современных авто может включать в себя 3 или 4 контура, выполняющих разные задачи. К ним следует отнести:

  • Основной.
  • Дублирующий.
  • Стояночный (ручной, горный).
  • Вспомогательный.

Рабочая система

Главную роль среди перечисленных систем играет основная (рабочая). Она используется непосредственно во время езды и предназначена для замедления ТС вплоть (при необходимости) до полной остановки. Существует два типа рабочих систем:

  • Дисковая.
  • Барабанная.

Рекомендуем: Принцип работы и особенности турбонаддува на бензиновых и дизельных двигателях

Специальные колодки в механизмах первого типа при нажатии педали сжимают диск с двух сторон, не давая ему вращаться и останавливая колесо. В системах второго типа колодки устанавливаются внутри колесного барабана. При надавливании на педаль они распирают его, препятствуя вращению колеса.

Дублирующий тормоз

Дублирующий механизм выполняет страховочную роль, вступая в работу при отказе основного. На одних моделях она полностью дублирует задние, а также передние тормоза, на других ее действие распределяется только на одну из частей (чаще всего на задние цилиндры). Иногда эта функция возлагается на ручной тормоз.

Стояночный механизм

Стояночный (горный, ручной) тормоз предназначен для обеспечения устойчивости машины на месте стоянки. Отпуская тормозную педаль, водитель отключает основную систему. Если площадка, выбранная для остановки, имеет даже незначительный уклон, авто может запросто покатиться, и не остановится, пока не упрется во что-либо на пути. «Чем-либо» может оказаться другой автомобиль, стенка здания или дерево, и тогда повреждения практически гарантированы. Дополнительной функцией ручника является удерживание машины на склоне, если она заглохла во время подъема. В этом случае для того, чтобы тронуться с места, водитель плавно отпускает сцепление, одновременно нажимая акселератор и опуская рычаг горного тормоза. При синхронном выполнении этих действий автомобиль назад не покатится.

Привод ручного тормоза ВАЗ 2106: 1 — чехол; 2 — передний трос; 3 — рычаг; 4 — кнопка; 5 — пружина тяги; 6 — тяга защелки; 7 — втулка; 8 — ролик; 9 — направляющая заднего троса; 10 — распорная втулка; 11 — оттяжная пружина; 12 — задний трос; 13 — кронштейн заднего троса

Вспомогательная система

Вспомогательные тормозные механизмы устанавливаются на крупногабаритные и тяжеловесные машины, используемые для перевозки различных грузов на дальние расстояния. Они позволяют частично разгрузить основную систему, когда автомобиль в течение достаточно длительного времени затормаживается на дорогах, проходящих по холмам или расположенным в горах.

Центробежный тормоз

В технике центробежные тормозные механизмы получили наиболее широкое распространение в качестве регуляторов скорости. Принцип работы этих устройств состоит в том, что как только увеличивается скорость вращения тормозного вала, сразу же начинает расти такая характеристика, как центробежная сила масс деталей тормозного механизма. На неподвижную часть тормоза оказывается повышенное давление, благодаря чему увеличивается сила трения и, соответственно, тормозной момент. Наиболее распространенным местом установки центробежного тормоза является быстроходный вал какого либо механизма.

Механические приводы стояночных тормозных систем

Стояночный тормоз легкового автомобиля

На рисунках 1 и 2 в качестве примера изображено устройство механического привода стояночной тормозной системы легковых автомобилей марки ГАЗ-2410, ГАЗ-3102 «Волга». Стояночные тормоза здесь установлены в задних колесах автомобиля, поэтому их называют колесными стояночными тормозами. Поскольку управляющий орган таких тормозов, как правило, имеет ручной привод в виде рычага, водители чаще называют стояночный тормоз ручным тормозом, или просто — «ручником».

Тормоз состоит из рычага 6 ручного привода колодок, к которому присоединен наконечник заднего троса 7 (рис. 1). Для разжимания верхних концов колодок между рычагом 6 и передней тормозной колодкой 10 установлена разжимная планка. Рычаг 6 шарнирно закреплен при помощи пальца 5 на верхнем конце задней тормозной колодки. Для регулировки разжимной планки и действия стояночного тормоза на планке имеются упор колодки 11, регулировочная гайка с храповиком 2 и фиксатором регулировочной гайки 12. В прорезь упора 11 входит ребро передней тормозной колодки, а в прорезь планки – рычаг 6.

Кронштейны 16 (рис. 2) с рычагом 2 крепятся болтами к переходному кронштейну, приваренному к передней панели пола. При перемещении рычага 2 стояночного тормоза вверх тяга 15 поворачивает рычаг 14, на нижнем конце которого шарнирно закреплена тяга 13 уравнителя 12. Уравнитель при помощи гайки 3 с контргайкой 4 закреплен на резьбовом конце тяги 13. Уравнитель предназначен для равномерного распределения усилия на ветви троса 11, приводящего в работу правый и левый тормозные механизмы колес. Пластмассовые направляющие 5 служат для фиксации троса 11 и запрещают самопроизвольное притормаживание колес при кренах кузова.

Тросы 11 входят внутрь тормозных механизмов и соединяются с приводными рычагами 6 (см. рис. 1) задней колодки. При перемещении этого рычага вперед он через планку и упор 11 действует на переднюю колодку, заставляя ее прижиматься к тормозному барабану, после чего усилие через палец 5 рычага передается на заднюю колодку, заставляя ее прижиматься к тормозному барабану. Происходит полное затормаживание задних колес автомобиля.

Ручка 1 (см. рис. 3) в приподнятом положении включает выключателем 17 сигнальную лампочку красного цвета на щитке приборов, сигнализируя водителю о том, что включен стояночный тормоз.

В верхнем положении рычаг привода стояночного тормоза удерживается храповым механизмом, состоящим из зубчатого сектора 9 (рис. 3) и собачки 8. Собачка удерживается в любом положении пружиной 4 и тягой 5.

Для растормаживания автомобиля необходимо нажать кнопку 1. При этом тяга 5 повернет собачку 8 и выведет ее из зацепления с зубчатым сектором 9, после чего рычаг 7 можно опустить в нижнее положение. В конце своего хода рычаг 7 утопит кнопку электрического выключателя, и на щитке приборов погаснет сигнальная лампа включения стояночного тормоза.

Аналогичные конструкции привода стояночной тормозной системы применяются на других легковых автомобилях, а также на некоторых типах автобусов (например, ПАЗ-3205) и грузовых автомобилей малой грузоподъемности. Грузовые автомобили средней грузоподъемности могут иметь центральный трансмиссионный стояночный тормоз, в котором также применяется механический привод.

Рекомендуется к прочтению  Какие педали есть в автомобиле, и каков порядок их расположения

Трансмиссионный стояночный тормоз грузового автомобиля

Трансмиссионный стояночный тормоз отличается от колесного тем, что удержание автомобиля осуществляется тормозным механизмом, размещенным на каком-нибудь элементе трансмиссии, а не в колесах. Чаще всего в трансмиссионных стояночных тормозах применяются барабанные тормозные механизмы. Такие тормоза применяются на некоторых моделях грузовых автомобилей малой и средней грузоподъемности.

Центральный трансмиссионный тормоз автомобиля ГАЗ-3307 относится к барабанному типу. Тормозной чугунный барабан 23 (рис. 4) закреплен на заднем конце вторичного вала коробки передач. Тормозной щит 19 закреплен на картере коробки передач. На нем закреплен корпус регулировочного механизма 20, внутри корпуса находятся опоры колодок 8 с коническими срезами внутренних концов и прорезями для тормозных колодок снаружи.

Между опорами колодок находится разжимной сухарь 5 плавающего типа конической формы и регулировочный винт 7. В верхней части тормозного щита закреплен болтами 13 корпус разжимного механизма 24. Разжимной механизм состоит из двух толкателей 9 колодок. Снаружи толкатели имеют прорези, и в них входят верхние концы тормозных колодок. Внутри толкатели имеют конические срезы, а между ними помещен конус корпуса 10 разжимных шариков 12.

Тормозные колодки 18 и 22 плавающего типа прижимаются к опорам 8 и толкателям 9 пружинами 21. Каждая колодка прижимается отдельными двумя пружинами. Первичная колодка 22 прижимается более слабыми пружинами, а вторичная колодка 18 – более сильными.

На кронштейне картера коробки передач закреплен палец, на котором шарнирно установлен рычаг привода 4. Одно плечо этого рычага пальцем соединено с вилкой 3. Вилка соединяется с тягой привода 1. Длина тяги и зазор между колодками и тормозным барабаном изменяется вращением гайки на тяге. После окончания регулировки необходимо затянуть контргайку 2.

При вытягивании рукоятки привода стояночного тормоза тяга 1 при помощи вилки 3 поворачивает рычаг 4 на установочном пальце. Второе плечо этого рычага нажимает на стержень корпуса шариков 10, а шарики 12, в свою очередь, скользя по коническим срезам толкателей 9 разжимного механизма, раздвигают толкатели в разные стороны и прижимают тормозные колодки 18 и 22 к барабану 23. При этом к тормозному барабану прижимается сначала первичная колодка 22, имеющая более слабые пружины. Вследствие трения колодка смещается по направлению вращения и через плавающий разжимной сухарь 23 передает дополнительное усилие на вторичную колодку 18, способствуя ее заклиниванию и более сильному прижатию к тормозному барабану, что усиливает действие тормозов.

От бокового смещения тормозные колодки удерживаются стержнем 17, который проходит через отверстие в ребре колодки. На нем установлена пружина 16 между двумя чашками 14 и 15.

Регулировка трансмиссионного стояночного тормоза

Зазор между тормозным барабаном и колодками регулируют подвертыванием регулировочного винта 7, а положение приводного рычага 4 – гайками на тяге 1 (рис. 4).

Регулировку производят при расторможенном механизме (ручка полностью вдавлена вперед). Для этого необходимо завернуть винт 7 до отказа, чтобы тормозной барабан 23 не вращался от усилия руки. Регулировочную гайку тяги 1 завернуть до соприкосновения внутреннего конца рычага 4 с разжимным стержнем, после чего отпустить эту гайку на 2…3 оборота и закрепить контргайкой 2. После этого регулировочный винт 7 надо отвернуть до свободного вращения тормозного барабана.

Устройство трансмиссионных стояночных тормозных механизмов грузовых автомобилей ГАЗ и ЗИЛ можно подробнее изучить по (схема откроется в отдельном окне браузера).

Какие есть виды тормозных автомобильных систем: устройство и работа

Для эффективного управления движением любого механического средства – регулированием скорости на том или ином участке пути, замедлением её при выполнении маневров, наконец, для остановки в нужном месте – и в том числе экстренной – на всех грузовых и легковых автомобилях должна быть установлена соответствующая классу машины тормозная система. Для удержания машины на месте во время продолжительной стоянки, особенно на склоне, предусмотрен стояночный тормоз.

тормозная система

Для безопасной эксплуатации транспортного средства эта система должна быть надежна, как никакая другая. Не случайно в перечне неисправностей, при которых запрещено использование транспортного средства (приложение к Правилам дорожного движения РФ), неисправности тормозных систем вынесены на первое место.

Классификация тормозных систем автомобиля

На современных автомобилях устанавливаются три-четыре вида тормозных систем:

  • рабочая;
  • стояночная;
  • вспомогательная;
  • запасная.

Основная и самая эффективная тормозная система автомобиля – рабочая. Она используется во всё время движения для регулирования скорости и полной остановки. Ее устройство довольно простое. Приводится она в действие нажатием на педаль тормоза правой ногой водителя. Такой порядок обеспечивает одновременный сброс оборотов двигателя, за счет снятия ноги с педали акселератора, и торможение.

тормозной диск

Стояночная тормозная система, как следует из названия, предназначена для обеспечения неподвижности транспортного средства во время длительной стоянки. На практике опытные водители оставляют машину с включенной первой или задней передачей. Однако на больших склонах этого может оказаться недостаточно. Ручной стояночный тормоз используют также при трогании с места на неровных участках дороги, когда правая нога должна быть на педали газа, а левая выжимает сцепление. Плавно отпуская рукой рычаг тормоза, включая одновременно сцепление и прибавляя газ, удается предотвратить произвольное скатывание автомобиля под уклон.

Запасная тормозная система призвана дублировать основную рабочую в случае её отказа. Это может быть полностью автономное устройство, или представлять собой часть, один из контуров тормозного привода. Как вариант, функции запасной может выполнять стояночная система.

Вспомогательная тормозная система устанавливается на большегрузных автомобилях, например, на отечественных КамАЗах, МАЗах, КрАЗах. Она предназначена для снижения нагрузки на основную рабочую систему во время длительного торможения – при движении в горах или по холмистой местности.

Мощный, но экономичный турбомотор: Great Wall раскрыл новый двигатель для будущих Haval и Tank

Auto Shanghai 2021
Запасная тормозная система дублирует рабочую. Она может представлять собой полностью автономное устройство или являться частью одного из контуров тормозного привода. В некоторых автомобилях в роли запасной системы выступает стояночная. Вспомогательная устанавливается на большегрузах, таких как КрАЗ, КамАЗ или МАЗ. С ее помощью снижается нагрузка на основную систему в процессе длительного торможения, когда машина движется по горам или холмистой местности.

Читайте нас:

Устройство системы и принцип действия

Основное в тормозной системе любого автомобиля – это тормозные механизмы и их приводы. Гидравлический тормозной привод, применяемый на легковых автомобилях, состоит из:

тормозные шланги

  1. педали в салоне;
  2. рабочих тормозных цилиндров передних и задних колес;
  3. вакуумного усилителя;
  4. трубопровода (тормозных трубок);
  5. главного тормозного цилиндра с бачком.

Принцип работы таков — водитель нажимает на педаль тормоза, приводя в движение поршень главного тормозного цилиндра. Поршень выдавливает жидкость в трубопроводы к тормозным механизмам, которые тем или иным образом создают сопротивление вращению колес, и таким образом происходит торможение.

Отпущенная педаль тормоза посредством возвратной пружины возвращает поршень назад, и жидкость перетекает обратно в главный цилиндр – колеса растормаживаются.

На отечественных заднеприводных автомобилях схема тормозной системы предусматривает раздельную подачу жидкости из главного цилиндра на передние и задние колеса.

На иномарках и переднеприводных ВАЗах применяется схема контура трубопровода «левое переднее – правое заднее» и «правое переднее – левое заднее».

Деление систем на независимые контуры

Тормозные системы могут быть одноконтурными, двухконтурными и многоконтурными.
У одноконтурных решений магистрали всех колёс – передних и задних объединены в одну ветвь, для управления воздухом используется всего один кран. Решение дешёвое, не крайне ненадёжное . На практике его сейчас можно встретить только на некоторых сельскохозяйственных машинах и прицепах с пневматикой, причём речь идёт только о старых моделях машин, новые решения с пневмоприводом ориентированы на несколько контуров.

Если же речь идёт о решениях с гидроприводом, то весьма вероятна разгерметизация, и жидкость вытечет из системы. И здесь об использовании одного контура и вовсе не может быть и речи. Предотвратить риски помогает наличие нескольких контуров. Даже если произойдёт разгерметизация одного из них, хоть и возникнет потеря эффективности, катастрофы можно будет избежать. Ведь контуры подстраховывают друг друга.

Самый распространённый вариант – наличие двух контуров. При этом схемы разделения гидропривода на 2 контура могут быть очень разными:

  • 2 +2, параллельное подключение. 1-й контур действует на тормоза передней оси, второй — на заднюю ось). Недостаток—задняя ось обеспечивает не более 40% тормозных сил. Поэтому, если исправен только 2-й контур, длина тормозного пути (ТП) увеличится в 2,5-3 раза.
  • 2+ 2 – диагональное подключение. 1-й контур действует на правое переднее и левое заднее колёса, а второй — на левое переднее и правое заднее.
  • Подходит для переднеприводных машин. Неисправность любого из контуров чревата увеличением ТП в два раза.
  • 4 + 2. 1-й контур действует на все колеса, а второй — только на передние.
Рекомендуется к прочтению  Прокачка тормозов – зачем, когда нужна и как правильно выполнить

Наиболее безопасно, с точки зрения опытных автомехаников, диагональное деление (эффективности удаётся достичь, даже если один из контуров поврежден) и схема разделения 4 + 2.

У грузовых автомобилей, автобусов часто может встречаться 4 и 5 контуров. Это сложные, но очень надёжные конструкции. У каждого контура— своя «зона ответственности (например, передняя ось, задняя тележка, стояночный, аварийное растормаживание), при этом каждый контур независим. Это возможно благодаря присутствию в конструкции специальных разделяющих клапанов.

Многоконтурная пневмосистема оптимизирует уровень устойчивости крупногабаритного транспортного средства, процесс управления им. Кроме того, пневматическая система позволяет без опасения потери рабочего тела подключать и отключать пневмосистемы тягача к прицепу или полуприцепу. При отсоединении прицепа автоматически срабатывает стояночная топливная система.

Типы тормозных механизмов, применяемые в автомобилях

На подавляющем большинстве авто установлены тормозные механизмы фрикционного типа, работающие по принципу сил трения. Устанавливаются они непосредственно в колесе и конструктивно подразделяются на:

тормозной диск и суппорт

Существовала традиция устанавливать барабанные механизмы на задние колеса, а дисковые на передние. Сегодня в зависимости от модели могут ставиться одинаковые типы на все четыре колеса – или барабанные, или дисковые.

Устройство и работа барабанного тормозного механизма

Устройство системы барабанного типа (барабанный механизм) состоит из двух колодок, тормозного цилиндра и стяжной пружины, размещенных на щите внутри тормозного барабана. На колодки наклепаны или приклеены фрикционные накладки.

Тормозные колодки своими нижними концами шарнирно закреплены на опорах, а верхними – под воздействием стяжной пружины – упираются в поршни колесного цилиндра. В незаторможенном положении между колодками и барабаном имеется зазор, обеспечивающий свободное вращение колеса.

задние колодки

Когда через тормозную трубку в цилиндр поступает жидкость, поршни, расходясь, раздвигают колодки. Они приходят в плотное соприкосновение с вращающимся на ступице тормозным барабаном, и сила трения вызывает торможение колеса.

Необходимо отметить, что в приведенной конструкции износ передних и задних колодок происходит неравномерно. Дело в том, что фрикционные накладки передней по ходу движения колодки в момент торможения при движении вперёд прижимаются к барабану всегда с большей силой, чем задние. Как выход, рекомендуется менять колодки местами через определенный срок.

Тормозной механизм дискового типа

Устройство дисковых тормозов состоит из:

  1. суппорта, закрепленного на подвеске, в теле которого размещены наружный и внутренний тормозные цилиндры (может быть один) и две тормозные колодки;
  2. диска, который закреплен на ступице колеса.

дисковые тормоза

При торможении поршни рабочих цилиндров с помощью гидравлики прижимают тормозные колодки к вращающемуся диску, останавливая последний.

Замена неисправного цилиндра тормозов

Схема замены в семействе ВАЗ практически одинакова для цилиндров обоих контуров с мелкими различиями.

Изначально нужно приготовить необходимые ключи и подходящие по размеру патрубков заглушки. Сняв колесо и открутив патрубки, для предотвращения утечки жидкости надеваем на них заглушки. Открутив соответствующие гайки, демонтируем старый цилиндр и на его место ставим новый, производя сборку в обратном порядке. Если после замены, сборке колеса мешают слишком разведенные колодки, можно подпилить концовки колодок, только не переусердствуйте, это может сказаться на работе ручного тормоза.

После любых манипуляций с системой тормозов требуется ее прокачка согласно схеме.

Для прокачки подготовьте: жидкость, ключ подходящего диаметра к воздушному штуцеру, шланг, плотно одевающийся на штуцер и любую емкость. Схема прокачки зависит от того, как расположены контуры в конкретной модели ВАЗ. Устройство тормозов некоторых подразумевает прокачку от «длинного трубопровода», имеется в виду от самого дальнего колеса относительно главного цилиндра.

Если конкретнее это выглядит так: в машине главный цилиндр размещен глядя на задний бампер, значит первым прокачивается задний правый цилиндр, затем задний левый. Следующим идет передний левый, и оканчивается процедура прокачкой того колеса, которое находиться с правой стороны от главного цилиндра. В более поздних моделях схема подразумевает прокачку крест-накрест глядя на машину сзади:

  • правое заднее колесо;
  • левое переднее колесо;
  • левое заднее колесо;
  • правое переднее колесо.

В любом случае заканчивать прокачку следует передним правым колесом.

В процессе этого действия не забывайте следить за уровнем гидравлической жидкости в бачке, чтобы воздух опять не попал в систему.

Сравнительные характеристики

Барабанные тормоза проще и дешевле в производстве. Они обладают свойством, называемым – эффект механического самоусиления. То есть, при продолжительном давлении ногой на педаль многократно увеличивается тормозящее действие. Это происходит за счет того, что колодки нижними частями связаны друг с другом, и трение передней о барабан усиливает давление на него задней колодки.

Однако механизм дисковых тормозов меньше и легче. Температурная стойкость выше, они быстрее и лучше охлаждаются за счет предусмотренных отверстий-окон. И замена изношенных дисковых колодок производится намного проще, чем барабанных, что важно, если производить ремонт самостоятельно.

Принцип работы стояночного тормоза

Он является чисто механическим устройством. Приводится в действие поднятием рычага «ручника» в вертикальное положение до момента щелчка фиксатора. При этом происходит натяжение двух металлических тросов, проходящих под днищем автомобиля, которые плотно прижимают тормозные колодки задних колес к барабанам.

Для снятия машины со стояночного тормоза надо пальцем утопить фиксирующую кнопку и опустить рычаг книзу, в первоначальное положение.

Не забывайте перед началом движения проверить положение ручника! Езда с не отпущенным ручным тормозом быстро выведет из строя тормозные колодки.

ручной тормоз

Уход за тормозной системой автомобиля

Как один из наиболее важных узлов, тормозная система автомобиля требует постоянного внимания и ухода. Здесь буквально любая неисправность может привести к непредсказуемым последствиям на дороге.

Некоторые диагнозы можно поставить, исходя из характера поведения тормозной педали. Так увеличенный ход или «мягкая» педаль свидетельствуют, скорее всего, о попадании воздуха в систему гидропривода в результате утечки тормозной жидкости. Поэтому необходимо периодически контролировать уровень жидкости в бачке.

Её повышенный расход может быть следствием повреждения гидрошлангов и трубок, а также обыкновенного испарения со временем. Это приводит к попаданию в систему воздуха и отказу тормозов.

Пришедшие в негодность детали необходимо заменить, а систему придется прокачивать, выпуская воздух из каждого рабочего цилиндра на колесах и доливая жидкость. Процесс длительный и нудный. Уход автомобиля при торможении в сторону говорит о возможном выходе из строя одного из рабочих цилиндров или чрезмерном износе накладок на каком-то определенном колесе. При загрязнении тормозных механизмов может возникать характерный шум при нажатии на педаль.

Все эти неисправности легко устраняются самостоятельно или обращением в сервисный центр. А чтобы свести к минимуму вышеописанные неприятности, берегите тормоза, чаще используйте торможение двигателем, особенно на крутых и затяжных спусках. Продолжительное по времени включение основной рабочей системы ведет к перегреву деталей и служит причиной различных поломок.

Что еще стоит почитать

Принцип работы сцепления автомобиля

Принцип работы сцепления автомобиля

Не работает стояночный тормоз

Не работает стояночный тормоз

Главный цилиндр сцепления

Главный цилиндр сцепления

Устройство глушителя

Устройство глушителя Бачок сцепления

Как работает тормозной диск и чем он лучше барабана: разбираемся вместе с Ferodo

Злые языки людей недалеких или просто медлительных быстро окрестили «тормозами». И, надо сказать, очень зря. Не только с точки зрения этики, но с точки зрения техники: тормоз – штука сложная, умная и очень быстрая. Конечно, в начале своего развития тормоза действительно были примитивными, малоэффективными и не очень надежными, но за сотню лет своей истории они сильно изменились.

Немного истории ​

Необходимость в тормозах появилась практически сразу после изобретения колеса, однако предки пару тысяч лет назад не стали торопить события и долго ездили на колесницах без тормозов в нашем привычном понимании. Однако к появлению карет тормоза уже поспели: это были механизмы, воздействующие непосредственно на колесо. Колодка, прижимаемая рычагом к внешней поверхности колеса, не могла эффективно остановить конный экипаж, но помочь лошадям была вполне способна. Но тут изобрели резиновые шины, и механизм с прижимом колодки к колесу ушел на пенсию. По крайней мере, в дорожном транспорте: сегодня механизмы с внешним прижимом успешно работают на железной дороге, хотя и там альтернатив им хватает. На обычных же дорогах кареты обзавелись ленточными тормозами: барабан на оси останавливался тормозной лентой, натягиваемой рычагом. Однако эффективность такой схемы тоже быстро была признана недостаточной, так что инженеры продолжили работать над изобретением новых механизмов.

Результатом этой работы стали два фундаментальных механизма, которые работают в автомобилях по сей день: барабанный и дисковый тормоз. Появились они практически одновременно, в самом начале 20 века, однако на первых порах барабанные механизмы захватили лидерство. Дело было не только в авторитете Вильгельма Майбаха, который установил на изобретенный им автомобиль барабанные тормоза, и Луи Рено, который запатентовал конструкцию с полукруглыми колодками. Барабанные тормоза были проще, а разработка фрикционных материалов способствовала их популяризации. Ключевым этапом в развитии фрикционных материалов стало создание тормозных накладок на основе асбеста и фенолформальдегидных смол, и сделала это в 1902 году компания Ferodo. В общем, начало века стало по-настоящему отправной точкой в развитии тормозных систем.

Рекомендуется к прочтению  Какие тормозные колодки лучше?

Однако дисковым механизмам потребовалось время, чтобы догнать барабаны и стать популярными. На ранних этапах у них было больше проблем, чем преимуществ: не было подходящего материала для изготовления дисков, в отсутствие усилителей система с механическим приводом требовала большего усилия по сравнению с барабанной, и даже гидравлический привод не решил вопрос из-за отсутствия нормальной тормозной жидкости. В общем, вопросов было больше, чем ответов, поэтому поначалу применение дисковых тормозов было эпизодическим. Одним из пионеров их применения был Уильям Ланчестер, но и он на тот момент не смог сделать дисковые механизмы конкурентным преимуществом своих машин. К примеру, на автомобилях Lanchester в начале 20 века диски из-за ограниченного выбора материалов были бронзовыми, что не способствовало их износостойкости. Однако полученный им патент все же стимулировал не только его самого к продолжению работы над совершенствованием дисковых тормозов.

Реальное развитие дисковая схема получила спустя еще 25-30 лет. К тому моменту был отработан гидравлический привод, а для снижения усилия на педали до приемлемого был внедрен вакуумный усилитель. Правда, в 30-е годы вакуумный усилитель в основном внедрялся на американские машины с барабанными тормозами, поскольку те все еще были дешевле и проще в производстве. Однако грядущий переход от барабанов к дискам уже был осязаем и неизбежен. Правда, в потребительском сегменте его сильно задержала Вторая мировая война. В военное время дисковым тормозам, разумеется, тоже уделяли внимание, однако они применялись и совершенствовались на танках и самолетах, а не на легковых машинах. Ну а после войны, на рубеже 40-х и 50-х, такие механизмы начали впервые появляться и на серийных автомобилях.

Разумеется, развитие дисковых тормозов сопровождалось совершенствованием конструкции и материалов. Помимо вакуумных усилителей и более эффективной тормозной жидкости, которая не закипала при торможении, важным этапом был переход к чугуну в качестве материала изготовления тормозных дисков. Причем серый чугун стал настолько эффективным решением, что применяется и поныне в подавляющем большинстве автомобилей. Чугун, правда, не решил полностью старые проблемы. Если охлаждение удалось улучшить за счет отливки вентилируемых тормозных дисков, то коррозия, пусть и внешняя, осталась верным спутником дисковых тормозов. О коррозии мы, впрочем, еще поговорим – а пока перейдем от древней истории к современной и вспомним, как эффективность дисковых тормозов выросла в последние десятилетия.

От чего зависит эффективность дисковых тормозов?

После получения практически идеального рецепта из нормальных чугунных дисков, качественных колодок и стойкой к перегревам тормозной жидкости на основе полиэтиленгликоля и его эфиров, развитие дисковых тормозных систем пошло в основном по экстенсивному пути. Переход к вентилируемым дискам состоялся быстро, ведь охлаждение было одной из ключевых задач повышения эффективности тормозов. А вот дальше начался поиск идеального баланса между диаметром тормозного диска, его конструкцией, материалом его изготовления и устройством тормозного механизма. Ведь с учетом того, что чугунный диск весьма прочен, отлично держит нагрузки и хорошо рассеивает тепло, на него можно и нужно хорошо давить. И здесь на сцену вышли многопоршневые конструкции. Тут все тоже несложно: если базовый тормозной механизм с плавающей скобой предусматривает наличие всего одного поршня, который давит на диск и прижимает к нему колодки с обеих сторон, то увеличение числа поршней и, соответственно, площади колодок позволяет повысить эффективность торможения без значительного увеличения диаметра самого диска. А это условие куда важнее, чем может показаться: ведь чугунный диск немало весит, так что повышение эффективности тормозов исключительно за счет увеличения площади диска – путь практически тупиковый из-за неоправданного роста неподрессоренных масс.

В борьбе за неподрессоренные массы родились не только многопоршневые механизмы, но и составные диски. Ведь тормозной диск фактически состоит из двух частей: ротора, на который давят колодки, и центральной части, которая крепится к ступице. При этом работа по созданию тормозного усилия ложится главным образом на ротор, да и охлаждать нужно именно его. А вот на материале центральной части можно и нужно сэкономить килограмм-другой. В этом, собственно, и состоит суть составных дисков, в которых центральная часть выполнена из более легкого материала вроде алюминиевого сплава, а ротор, прикрепленный к ней винтами или заклепками, – из традиционного чугуна.

Следующим шагом здесь стала замена чугуна на более легкие материалы, такие как углеродное волокно и керамика. Казалось бы, вот он – новый прорыв, ведь карбон-керамические тормоза можно делать сколь угодно большими из-за их небольшой массы, а их износостойкость и термостойкость лишь укрепляют веру в прогресс. Однако на практике оказалось, что диски из углеродного композита хороши лишь при экстремальных нагрузках, когда рабочие температуры переваливают за тысячу градусов. В гражданских же условиях «холодные» тормоза работают гораздо менее эффективно, и в основном именно эта зависимость эффективности от температуры ограничивает их применение на массовых машинах.

Таким образом, главным материалом тормозных дисков потребительского уровня остается высокопрочный чугун с шаровидным графитом, а основной фокус делается на качестве изготовления и эффективности охлаждения. Важными в этих условиях становятся технологии производства: качество сырья и литья, чистовая обработка поверхностей, а также отработанная процедура стендового и практического тестирования для контроля качества. Все это доступно крупным производителям тормозных компонентов с большим опытом и историей производства – таким, как Ferodo. Именно Ferodo, как мы помним, более века назад дала толчок к развитию тормозных систем своими разработками в области фрикционных материалов. А сегодня продукция Ferodo является частью обширного ассортимента, предлагаемого подразделением DRiV корпорации Tenneco. Компания выпускает полный ассортимент тормозных компонентов, включая диски, колодки, суппорты, гидроцилиндры и шланги тормозной системы, тормозные жидкости и многое другое.

А теперь на секундочку вернемся к коррозии, о которой мы говорили выше. Для чугунных дисков окисление – проблема все же не эксплуатационная, а эстетическая: чтобы чугунный диск съела ржавчина, потребуется не один десяток лет, а вот поверхностная коррозия появляется на нем уже спустя несколько месяцев, особенно в условиях агрессивной среды вроде дорожной химии. И у Ferodo есть решение этого эстетического вопроса: диски с технологией Coat+, имеющие цинк-алюминиевое гальваническое покрытие для защиты диска от коррозии. Эта технология надежно защищает от коррозии не только ступичную часть диска, но и внутренние каналы охлаждения, обеспечивая требуемую эффективность отвода тепла при торможении. То есть жизнь владельцев красивых машин, которые уделяют внимание мелочам и не любят видимые внешние дефекты, становится немного проще: диски с технологией Coat+ сохраняют свой изначальный внешний вид долгие годы – при условии правильной эксплуатации и, конечно же, ухода.

Заключение

Завершая разговор о тормозах, обычно говорят об их важности, о том, что экономить на них, как и на шинах, нельзя, а также о том, что тормоза – это главное условие безопасности. Хорошие колодки – не просто те, что не скрипят. Хорошие диски – не просто те, что вышли с завода ровными и круглыми, а те, что выполнены из качественного материала, имеют эффективное охлаждение и, соответственно, не деформируются при активной эксплуатации. Конечно, даже покоробленные диски в ряде случаев можно проточить, но чудес обычно не бывает: если они испортились раз, то испортятся и второй. Мы с этими прописными истинами, разумеется, согласны, а потому рассказываем не только о теории, но и о выборе качественной продукции – такой, как Ferodo. Уж если этому бренду более 120 лет и специалисты Ferodo разрабатывали и производили детали тормозной системы и для повозок в далеком 1897 году, и делают это сейчас для современных автомобилей, то в тормозах они разбираются однозначно.

Источник https://sto-tolyatti.ru/sovety/naznachenie-tormoznoj-sistemy.html

Источник https://linhai-russia.ru/pdd/vidy-tormoznyh-mehanizmov.html

Источник https://www.kolesa.ru/article/kak-rabotaet-tormoznoy-disk-i-chem-on-luchshe-barabana-razbiraemsya-vmeste-s-ferodo

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: