Содержание
Электрические машины постоянного тока: назначение, конструкция, устройство и принцип действия
Машины постоянного тока (МПТ) – это общий термин, объединяющий генераторы (ГПТ) и двигатели (ДПТ). Как правило, говоря об МПТ, имеют в виду биполярные машины, у которых имеются чередующиеся «северные» и «южные» магнитные полюсы возбуждения и механический или электронный коммутатор тока вращающейся обмотки якоря с одним единственным кольцевым полюсом (в отличие от униполярных машин). Мы также будем придерживаться этого принципа.
Классификация МПТ
В электромашиностроении и теории электромашин принято разделять МПТ на устройства с явно и с неявно выраженными полюсами возбуждения, с цилиндрической или многогранной станиной, с возбуждением постоянным током или постоянными магнитами, с механическим коммутатором-коллектором на якоре или бесконтактные. Назначение машин постоянного тока разделяет их на общепромышленные и специализированные. Среди последних можно назвать, например, тяговые ДПТ, используемые в рельсовом транспорте. Выделяются также металлургические ДПТ, в особенности двигатели для прокатных станов и т. д.
Как известно, обмотки машин постоянного тока разделяются на обмотки возбуждения (ОВ) и якоря (ОЯ). Первые служат для возбуждения магнитного поля устройства, а вторые — для отбора мощности от питающей электросети в режиме двигателя или для питания электрической нагрузки в режиме генератора. Существуют еще и обмотки дополнительных полюсов, используемые для облегчения процесса коммутации.
Электрические машины постоянного тока независимо от того, являются ли они генераторами или двигателями, могут быть классифицированы на основе схем соединения их обмоток возбуждения и якоря. Они могут составлять единую электрическую цепь или же вообще не иметь электрической связи (независимое возбуждение). Этот принцип классификации делит МПТ на два основных типа. Вы поймете дальнейшую их классификацию из представленной ниже схемы.
Устройство машины постоянного тока
ГПТ может использоваться как ДПТ без каких-либо конструктивных изменений. Конечно, промышленностью выпускаются машины, предназначенные для работы в качестве двигателей, и машины, являющиеся генераторами. Однако отличия между ними состоят в конструкции отдельных частей, и на этапе общего ознакомления могут быть проигнорированы. Следовательно, далее будем рассматривать устройство машины постоянного тока в общем, без привязки к режиму ее работы.
Ниже на рисунке показан поперечный разрез простой МПТ с двумя парами явно выраженных полюсов. Конструкция ее содержит две основные части: статор и якорь. Рассмотрим, из каких деталей они состоят.
Статор содержит станину, а также главные и находящиеся между ними дополнительные полюсы (на рисунке не показаны).
Станина – это внешняя конструктивная оболочка МПТ. Она бывает литой из чугуна (у машин старых конструкций) или сварной из толстого листа стали. Станина механически прочно скрепляет всю сборку МПТ. Кроме того, она служит магнитопроводом для магнитного потока, производимого главными полюсами.
Последние прикреплены к станине с помощью винтов или сварки. Основное их назначение – нести катушки обмотки возбуждения, намотанные на них и соединенные последовательно между собой таким образом, чтобы магнитная полярность полюсов чередовалась, т. е. после «северного» полюса следовал бы «южный» и т. д.
Полюсные наконечники (башмаки), являющиеся расширением главных полюсов, служат двум целям: для предотвращения соскальзывания катушек и для равномерного распределения поля возбуждения на большей части окружности воздушного зазора.
Якорь машины постоянного тока состоит из сердечника с обмоткой, втулки и вала. Сердечник – это стальной каркас цилиндрической формы, сложенный из тонких электрических листов стали, покрытых с обеих сторон электроизоляционным лаком. Это делается для предотвращения появления вихревых токов, стремящихся замкнуться в толще сердечника. В пазах его уложены секции петлевой или волновой обмотки якоря, коллектор машины постоянного тока и щетки. Обмотку якоря нужно присоединить к внешней электросети постоянного тока. Но нельзя непосредственно соединить выводы обмотки с сетевым вводом, потому что она вращается. Поэтому между сетью и обмоткой якоря установлен коммутатор-коллектор, представляющий собой множество изолированных друг от друга пластин из меди, образующих внешнюю цилиндрическую поверхность, разделенную изоляционными дорожками. Неподвижные контактные щетки скользят по ней, когда якорь с коллектором вращаются. Таким образом неподвижные щетки физически соприкасаются с вращающейся обмоткой якоря, а с их помощью уже можно выполнить подключение к внешней сети машины постоянного тока.
Развитие конструкций МПТ
Первые промышленные образцы МПТ появились в 70-х гг. 19 в. Поначалу они имели кольцевой якорь с тороидальной (граммовской) обмоткой. После изобретения барабанного якоря они приобрели законченный вид, примерно соответствующий вышеприведенному рисунку. Однако конструкция машин постоянного тока во второй половине 20 в. претерпела довольно сильные изменения. Прежде всего они коснулись статора. Вместо явно выраженных главных полюсов стали применять неявнополюсную конструкцию. В ней сосредоточенную катушку возбуждения каждого главного полюса заменили несколько меньшие по размерам катушки, расположенные в пазах шихтованного статора, который имеет прямоугольную или многогранную форму, как на рисунке ниже. В тех же пазах статора размещают и компенсационную обмотку, о которой будет сказано далее. В результате конструкция машин постоянного тока стала намного легче.
В связи с развитием управляемого асинхронного электропривода некоторые специалисты высказывают мнение о скором вытеснении асинхронными двигателями ДПТ из традиционных для них областей применения, таких как тяговый электропривод или привод металлургических механизмов. Однако пока еще рано говорить об этом как о свершившемся факте.
Общий принцип образования обмотки якоря
Любая из обмоток якоря является замкнутой сама на себя непрерывной электрической цепью, состоящей из последовательно соединенных секций (катушек). В простейшем случае секция может представлять просто один виток с двумя пазовыми проводниками или же быть многовитковой. Пазовые стороны секции всегда разнесены на расстояние, чуть меньшее полюсного деления – части окружности якоря, приходящейся на один главный полюс. Поэтому они в каждой из секций всегда находятся под главными полюсами противоположной полярности. В единую замкнутую цепь секции соединяются на пластинах коллектора. Способ же этого соединения и определяет тип обмотки. Рисунок ниже поясняет принцип образования обмотки якоря машины постоянного тока из шести многовитковых секций, соединяемых на пластинах коллектора.
В положении, показанном на рисунке, щетки разделяют обмотку якоря на две параллельные ветви: верхнюю, в которую входят секции L1, L2, L3, и нижнюю, состоящую из секций L4, L5, L6. Число таких ветвей зависит от типа обмотки якоря, но оно всегда четное и не может быть меньше двух.
Петлевые и волновые обмотки якоря
Это два основных типа обмоток, каждый из которых имеет несколько разновидностей. Мы рассмотрим их простейшие варианты. Слева на рисунке ниже показана форма секций, из которых состоит простая петлевая обмотка якоря машин постоянного тока. Как можно увидеть, такая же форма секций характерна для волновой обмотки.
В первом варианте один (начальный, стартовый) вывод каждой двухвитковой секции подключен к i-й пластине коллектора, а второй (конечный, завершающий) вывод соединен на соседней (i+1)-й пластине коллектора с начальным выводом следующей секции (см. рисунок выше). Таким образом, выводы каждой секции присоединены к двум рядом расположенным пластинам, а сама секция, состоящая из двух пазовых сторон и двух лобовых частей по форме напоминает петлю (отсюда и название обмотки).
Секция волновой обмотки имеет выводы, присоединенные не к соседним пластинам коллектора, а к разнесенным на определенный шаг, называемый шагом обмотки по коллектору ук. Для простой петлевой обмотки ук=1, а для простой волновой — ук=(К±1)/р, где К – число пластин коллектора, р- число пар главных полюсов. Как видно из рисунка, вследствие такого способа соединения секции приобретают форму, похожую на полуволну синусоиды, что и обусловило название обмотки.
Принцип действия в режиме генератора
Согласно первоначальной трактовке явления электромагнитной индукции в движущемся проводнике, данной еще Фарадеем, когда он пересекает при движении силовые линии магнитного поля, в нем наводится ЭДС. Следуя этому принципу, можно объяснить причину наведения ЭДС в активных проводниках (тех, что уложены в пазы) обмотки якоря МПТ. Действительно, они движутся под главными полюсами, пересекая при этом линии поля. Поскольку последние непрерывны, каждый проводник якоря независимо от того, расположен ли он на его поверхности (так было в первых конструкциях МПТ) или в пазах, пройдя под полюсом, пересечет все исходящие из его наконечника линии поля. Направление действия индуцированной в проводнике ЭДС можно определить, применяя правило правой руки, которое иллюстрирует рисунок ниже.
Пазовые проводники якоря попарно входят в состав витков катушек его обмотки. Сумма ЭДС витков дает ЭДС катушки. Неподвижные щетки делят всю обмотку якоря на несколько (минимум две) параллельных ветвей. Сумма ЭДС всех катушек, входящих в параллельную ветвь, дает ЭДС всей обмотки якоря МПТ. Таким образом, принцип действия машин постоянного тока при работе генератором можно сформулировать так: якорь возбужденной машины вращается приводным двигателем, в его обмотке наводится ЭДС, которая вызывает протекание постоянного тока якоря в замкнутой электроцепи, включающей обмотку, коллектор, щетки и внешнюю сеть с нагрузкой.
При наличии тока якоря на него начинает действовать тормозящий электромагнитный момент. Он создает нагрузку для приводного двигателя. Чем больше электрическая мощность нагрузки генератора, тем сильнее тормозится его якорь и тем выше нагрузка приводного двигателя. При этом согласно закона сохранения энергии в последнем расходуется столько топлива на приведение якоря генератора во вращение, чтобы высвобожденная при его сгорании химическая энергия за вычетом энергетических потерь в двигателе и генераторе равнялась бы энергии, отбираемой электрической нагрузкой от машины постоянного тока.
Устройство и принцип действия в режиме двигателя
В этом режиме ток якоря подается в его обмотку от питающей электросети при пуске. На пазовые проводники якоря с током, находящиеся под главными полюсами, действуют силы Ампера. Направление их определяется по правилу левой руки, которое иллюстрирует рисунок ниже. Их сумма создает вращающий электромагнитный момент якоря (в отличие от тормозящего в режиме генератора), и он приходит во вращение.
Но во вращающихся пазовых проводниках, как и в генераторном режиме, наводятся ЭДС, которые дают суммарную ЭДС обмотки якоря. Она действует встречно напряжению питающей сети, частично уравновешивая его. Так выглядит принцип действия машин постоянного тока при работе двигателя. При этом согласно закона сохранения энергии от питающей электросети двигателем отбирается столько электроэнергии, сколько требуется механической энергии для приведения в движение присоединенного механизма с учетом энергетических потерь (электрических и механических). Иначе говоря, чем сильнее нагружен двигатель механически, т. е. чем больше вес и момент инерции приводимых им в движение механизмов или чем больше момент сопротивления среды, препятствующий их движению, тем большее количество электроэнергии потребляется двигателем от сети.
О физическом механизме наведения ЭДС в проводниках обмотки якоря МПТ
Следует отметить, что физикам-теоретикам не нравится вышеприведенный (и популярный в технической литературе) физический механизм наведения ЭДС, т. к. силовые линии магнитного поля – это всего лишь умозрительный образ, придуманный Фарадеем для его описания. Никаких подтверждений действительного существования их как реальных физических объектов не существует.
Альтернативным механизмом наведения ЭДС в движущемся пазовом проводнике обмотки якоря МПТ является воздействие на электроны внутри него силы Лоренца, пропорциональной магнитной индукции в месте расположения проводника. Однако и здесь имеется противоречие, заключающееся в том, что внутри пазов якоря магнитная индукция исчезающе мала, а на величине ЭДС проводников это не сказывается. Поэтому вместо индукции в пазе в формулу подставляют индукцию в воздушном зазоре, что, конечно же, неправильно, но дает результат, близкий к наблюдаемому на практике.
Выходом из данной коллизии является переход к описанию магнитного поля не посредством вектора магнитной индукции, а при помощи векторного магнитного потенциала. Активным сторонником такого подхода был выдающийся русский электротехник К. М. Поливанов. Более подробно с этой проблемой можно познакомиться в работах автора.
Магнитное поле МПТ при нагрузке
В нагруженной МПТ имеется два вида магнитных потоков: поток ОВ и поток ОЯ, создаваемые токами этих обмоток. Силовые линии первого из них направлены вдоль осей пары полюсов, через которые он замыкается, как это показано на фигуре 1 на рисунке ниже. Такой поток возбуждения называется продольным. Если полюсов в МПТ больше двух, то в воздушном зазоре под наконечником каждого из них это поле также является продольным.
Силовые линии потока ОЯ замыкаются поперек оси полюсов, поэтому применительно к МПТ говорят о поперечном поле якоря, которое показано на фигуре 2 на том же рисунке.
Поток якоря суммируется с потоком возбуждения, образуя результирующий поток. В этом проявляется реакция якоря машины постоянного тока, заключающаяся в воздействии поперечного поля на продольное поле возбуждения, силовые линии которого при этом искажаются, сгущаясь возле одного края полюса и разреживаясь возле другого. В ГПТ сгущение силовых линий поля, т. е. его усиление относительно поля возбуждения, происходит под набегающим на якорь краем полюса, а в ДПТ — под сбегающим, как показано на фигуре 3.
Побочные следствия реакции якоря
Вследствие явления магнитного насыщения стали результирующее поле под краем полюса, где оно усиливается, не может увеличиться в той же степени, в которой ослабляется под противоположным краем. Поэтому результатом данного эффекта является общее снижение магнитного поля нагруженной машины. В случае генератора ослабление поля уменьшает генерируемое напряжение.
Реакция якоря машины постоянного тока искажает пространственную картину силовых линий поля, следовательно, изменяется положение магнитной нейтрали (МН) — в двухполюсной МПТ она перпендикулярна силовым линиям потока возбуждения и совпадает с геометрической нейтралью ГН. Щетки должны быть размещены на МН, в противном случае это приведет к искрению под ними. Таким образом, в связи с реакцией якоря трудно определить точное положение МН. Впрочем, для этого существуют апробированные на практике способы.
Вторым негативным следствием данного эффекта, которое существенно ухудшает эксплуатационные характеристики машины постоянного тока, является повышение максимального напряжения между рядом расположенными пластинами. Посмотрите еще раз на схему простой петлевой обмотки. Если стороны некоторой ее секции находятся одновременно под краями двух соседних разноименных главных полюсов с увеличенным из-за реакции якоря полем, то индуктируемое в этой секции напряжение, а следовательно, и напряжение между парой соседних пластин коллектора может существенно превысить его величину, когда реакция якоря отсутствует, т. е. при холостом ходе. Причем такое превышение наступает обычно сразу на нескольких участках коллектора, расположенных в зонах увеличенного поля. В результате может возникнуть такое явление, как круговой огонь на коллекторе, которое может его полностью разрушить. Поэтому без специальных конструктивных способов подавления реакции якоря работа машины постоянного тока, имеющей среднюю и большую мощность, практически невозможна.
Способы борьбы с реакцией якоря
Наиболее простым и первым из появившихся способов стало увеличение воздушного зазора от середины к краям наконечников полюсов, т. е. выполнение расходящегося зазора. При этом увеличивалось магнитное сопротивление потоку реакции якоря, и воздействие его на поле возбуждения уменьшалось. Но сопротивление росло и для потока возбуждения, что вынуждало увеличивать габариты катушек на главных полюсах.
Для ослабления потока якоря при изготовлении главных полюсов используется электротехническая сталь с магнитной анизотропией ее свойств (магнитной проницаемости) вдоль и поперек оси полюсов. Полюсы из такой стали хорошо проводят продольный поток возбуждения и плохо — поперечный поток якоря. Однако такая сталь очень дорога, а ее свойства сильно зависят от температуры и изменяются с течением времени.
Наконец был найден радикальный способ борьбы с реакцией якоря машины постоянного тока. Устройство и принцип действия ее при этом почти не изменились, но добавилась еще одна обмотка – компенсационная. Она размещается в пазах, выполняемых в наконечниках главных полюсов (или в пазах статора вместе с обмоткой возбуждения при неявнополюсной конструкции), как показано на рисунке ниже, и присоединяется последовательно к обмотке якоря, т. е. по ним проходит одинаковый ток.
Однако направление обтекания им витков компенсационной обмотки выбрано таким образом, что возбуждаемый ею магнитный поток направлен навстречу потоку реакции якоря и компенсирует его.
Все современные электрические машины постоянного тока, имеющие среднюю и большую мощность, оснащаются такой обмоткой.
Двигатели общего назначения: устройство, принцип работы, использование, фото
Автомобильная техника в основном оснащается стандартизированными ДВС (двигателями внутреннего сгорания), конструкция которых ориентируется на размещение в подкапотном пространстве. Однако существует большой спрос на силовые агрегаты данного рода в сегментах садового оборудования, у производителей снегоуборочной техники, снегоходов и т. д. Причем требования к интеграции и эксплуатационным параметрам в таких случаях резко отличаются от автомобильных стандартов. В связи с этим был сформирован целый сегмент двигателей общего назначения с оптимизированной конструкцией, но различными техническими характеристиками.
Назначение агрегатов
Как и другие виды ДВС, силовые установки общего назначения служат для генерации и преобразования тепловой энергии в механическую. За счет оптимизации данного процесса в технико-конструкционном отношении разработчики смогли предложить этот продукт широкому кругу потребителей. В их числе изготовители садового, строительного, дорожного, уборочного, лодочного и спортивного оборудования и техники. Например, в строительном сегменте двигатель общего назначения может использоваться для поддержки функции компрессорного оборудования. При этом сам агрегат вовсе не обязательно должен интегрироваться в конструкцию компрессора. Подключение выполняется в отдельном порядке, а ДВС работает в качестве автономного генератора, питающегося от бензинового или дизельного топлива. Производители садовой техники чаще используют малогабаритные двигатели в составе газонокосилок, мотокультиваторов, насосных станций, поливальных машин и т. д. Наиболее же крупные и мощные агрегаты этого типа применяются в составе электростанций, спецтехники и снегоходов.
Устройство двигателей общего назначения
Принцип работы тот же, что и у стандартных ДВС. Соответственно, в устройстве предусматривается аналогичный набор конструкционных элементов с группой цилиндров, подшипниками, кривошипно-шатунным механизмом и валом. Отличия заключаются лишь в размерах, конфигурации расположения деталей и дополнительной оснастке. Что касается габаритов, то в большей мере это компактные агрегаты. С одной стороны, оптимизация по размерам обуславливается ограничениями технико-эксплуатационного процесса (малые размеры целевого оборудования), а с другой – повышенными экологическими требованиями (особенно касается садовой техники).
В плане конфигурации компоновки двигатели общего назначения более разнообразны, чем обычные моторы для автомобильного транспорта. Универсальность же проявляется в том, что агрегат одного форм-фактора может подходить сразу нескольким группам целевого оборудования из самых разных сегментов. Для более эргономичной эксплуатации и расширения возможностей интеграции ДВС такого типа используется вспомогательная оснастка. Это могут быть рамные платформы, приспособления с рукоятками, каркасы и несущие платформы с ходовой частью.
Разновидности ДВС общего назначения
Конфигурация компоновки функциональных элементов является одним из ключевых признаков разделения моделей. Так, по расположению коленвала ДВС общего назначения классифицируются следующим образом:
- С горизонтальным валом. Такие устройства чаще используются в производстве строительной техники. Например, в эту группу входят ДВС, обеспечивающие работу вибрационных плит, резчиков и некоторых гидроабразивных машин.
- С вертикальным валом. Оптимальное решение для малогабаритной техники, которая нередко управляется оператором на весу. К двигателям общего назначения с вертикальным валом можно отнести силовые установки для газонокосилок и садовых триммеров. В таких конструкциях режущие лезвия фиксируются к коленвалу без промежуточных механизмов, что как раз и позволяет снижать размеры и массу оборудования.
Также различается и конструкция самого вала. Он может иметь коническую или цилиндрическую форму. Первый вариант предпочтительнее с точки зрения эргономики размещения, но второй отличается универсальностью использования в принципе.
Технические характеристики
Преимущественно речь идет о малогабаритных легких агрегатах, но и в этом сегменте есть различия по диапазонам показателей в технико-эксплуатационных параметрах. Например, существует популярный сегмент двигателей мощностью от 8 до 13 л. с. Такие агрегаты как раз чаще используются в садовой технике. В рамках объема цилиндра до 1 л силовой потенциал может достигать и 25 л. с. Это дизельные установки с воздушным охлаждением, которые могут применяться в строительной и транспортной технике. Тот же дизельный двигатель общего назначения с частотой вращения шпинделя порядка 1500 об/мин хорошо распространен в нише промышленного и коммерческого оборудования. Бытовые же агрегаты в основном комплектуются высокочастотными четырехтактными агрегатами на бензиновом топливе. Впрочем, о применениях разных ДВС общего назначения в зависимости от ресурса потребления стоит поговорить отдельно.
Применение бензиновых двигателей
Обширная группа силовых установок, которые находят свое место в бытовом хозяйстве, промышленности и даже энергетике. К примеру, бензогенераторы могут использоваться для автономных электростанций, на удаленной стройплощадке в качестве резервного источника питания или в энергоснабжении частного дома. К наиболее известным производителям таких ДВС относятся Robin-Subaru, Kipor, Green Field и Honda. Они же выпускают достойные приводные механизмы для мотоблоков, снегоходов, строительной и сельхозтехники. Типичным представителем сегмента является одноцилиндровый двигатель общего назначения «Хонда» в модификации CV 530. Агрегат характеризуется верхним расположением клапанов, наличием воздушного охлаждения и вертикального вала. Существенным отличием этой установки от дизельных аналогов можно назвать высокую степень экологичности.
Применение дизельных двигателей
Дизельная техника традиционно выигрывает в показателях мощности, что позволяет ее использовать в оснащении профессиональной дорожной и лодочной техники. Также это привлекательное решение для автономного энергоснабжения, причем в отличие от бензиновых агрегатов такие ДВС имеют более высокий рабочий ресурс при схожих показателях затрат в части обслуживания. Стандартное устройство дизельных двигателей общего назначения демонстрирует немецкий трехцилиндровый агрегат Deutz TD226B-3D, который также считается одним из самых экономичных и экологически чистых в своем классе. Эти характеристики как раз стали возможны благодаря наличию системы полного отбора мощности (45-60 л. с.) с маховика для радиального или осевого привода. К этому можно добавить и водяное охлаждение с прямым топливным впрыском.
Применение электрических двигателей
Имеют свои преимущества и электродвигатели общего назначения, что выражается в их экологической чистоте, малошумности и малых размерах. Конечно, у них и самый низкий показатель производительности, но этот нюанс не мешает в полной мере использовать данную технику в мотоциклах, тех же газонокосилках, электроножницах и цепных пилах. Инновационные решения в сегменте двигателей общего назначения регулярно демонстрирует компания Siemens, выпуская модели мощностью от 0,06 до 1000 кВт. В ассортименте фирмы можно найти алюминиевые и чугунные конструкции, которые подходят для самых разных условий эксплуатации.
Заключение
Концепция ДВС общего назначения обусловлена необходимостью технологического прогресса, который расширяет области использования силового оборудования. На этом фоне логично обостряются и задачи унификации подобной техники. Но и универсальность двигателей имеет свои отрицательные стороны. Они выражаются в высокой стоимости, маломощности и проблемах технического обслуживания. С другой стороны, китайские двигатели общего назначения «Лифан» при всех своих недостатках, которые проявляются в контексте сравнения с теми же немецкими агрегатами, показывают пример совмещения универсальности и достойных потребительских свойств. И это не говоря о низкой стоимости данной продукции, которая изначально входит в бюджетный сегмент. Отчасти такими же преимуществами славятся отечественные ДВС общего назначения от предприятий ВТЗ, ЯМЗ и «Алтай-дизель».
Газораспределительный механизм автомобиля – один из самых сложных механизмов в конструкции двигателя. Для чего предназначен ГРМ, какова его конструкция и принцип работы? Как производится замена ремня ГРМ и как часто необходимо ее проводить?
В настоящее время человечество пытается автоматизировать все возможные процессы. Как известно, любая электроника работает от электроэнергии. И именно поэтому на сегодняшний день ни одна из отраслей не может функционировать без общепромышленных .
Судовые двигатели по параметрам довольно сильно отличаются. Для того чтобы разобраться в данном вопросе, необходимо рассмотреть характеристики некоторых модификаций. Также следует ознакомиться со схемой судового двигателя.
В нефтяной и газодобывающей отрасли применяется винтовой забойный двигатель. Это оборудование специального назначения, которое обладает определенной конструкцией, характеристиками. Существует несколько основных разновидностей подобных агрегатов. Об .
На сегодняшний день развитие технологий продвинулось достаточно широко, и те операции, которые ранее выполнялись двумя различными устройствами, может выполнять всего одна машина. Ярким примером такого прогресса стал универсальный привод.
Владельцы загородных и дачных участков давно отказались от ручного труда и переложили все работы, связанные с возделыванием земли, на мотоблок. Этот небольшой самоходный трактор в состоянии с легкостью справиться с большинством сельскохозяйственных работ. Главное — обеспечить его для этого мощной и надежной силовой установкой.
Самым распространенным двигателем из тех, которые устанавливаются в настоящее время, является мотор внутреннего сгорания. Устройство и работа двигателя автомобиля достаточно простые, несмотря на множество деталей, из которых он состоит. Рассмотрим это более подробно.
В настоящее время большинство транспортных средтсв работают при помощи двигателя. Классификация этого устроства огромна и включается в себя большое количество различных видов двигателей.
Электродвигатель преобразует электроэнергию в механическую. Он состоит из статора (или якоря) и ротора. Такое устройство получило очень широкое распространение во всех сферах жизни. Благодаря электрическим двигателям удалось заменить во многих областях труд человека работой машины. Рассмотрим различные типы моторов и выясним, где применяются электродвигатели (примеры см. ниже).
УД-25 – двигатель довольно старый. Он был разработан еще в 1967 году Ульяновским моторным заводом. Это двухцилиндровый агрегат с хорошими эксплуатационными характеристиками, он используется в основном на строительных машинах и сельскохозяйственной технике.
Как устроен двигатель автомобиля
Как работает двигатель автомобиля – устройство, принцип действия + видео
Прежде, чем рассматривать вопрос, как работает двигатель автомобиля, необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.
Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится поршень с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.
Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение коленчатого вала.
Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.
Как работает двигатель автомобиля – кратко о сложных процессах
Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.
Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.
Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.
Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.
Принцип работы двигателя автомобиля – различия в моделях
Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.
Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.
Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.
- Автор: Михаил
- Распечатать
Принцип работы любого двигателя автомобиля
Двигатель — сердце. Как много сегодня означает это слово. Без двигателя не работает ни одно устройство, двигатель дает жизнь любому агрегату. В данной статье рассмотрим, что такое двигатель, какие виды бывают, как работает двигатель автомобиля.
Основная задача любого двигателя – превратить топливо в движение. Одним из способов достичь такого можно с помощью сжигания топлива внутри мотора. Отсюда и название двигатель внутреннего сгорания. Но, кроме ДВС следует различать и двигатель внешнего сгорания. Примером служит паровой двигатель теплохода, когда его топливо (дерево, уголь) сгорают за пределами мотора, генерируя пар, являющийся движущей силой. Двигатель внешнего сгорания не так эффективен как внутреннего.
На сегодняшний день широкого распространения получил двигатель внутреннего сгорания, которым укомплектованы все автомобили. Несмотря на то, что КПД ДВС не близко к отметке 100 %, лучшие ученые и инженеры трудятся над доведением до совершенства.
По видам двигателя делятся:
• Бензиновые: могут быть как карбюраторными так и инжекторными, используется система впрыска.
• Дизельные: работают на основе дизельного топлива, которое под давлением распыляется в камере сгорания топливной форсункой.
• Газовые: работают на основе сжиженного или сжатого газа, произведённого от переработки угля, торфа, дерева. Итак, перейдем к начинке мотора.
• Основным механизмом является блок цилиндров, он же часть корпуса механизма. Блок состоит из различных каналов внутри себя, что служит для циркуляции охлаждающей жидкости, снижая температуру механизма, в народе называется рубашка охлаждения.
• Внутри блока цилиндров расположены поршни, их количество зависит от конкретного двигателя. На поршень одеваются в верхней части компрессионные кольца, а в нижней маслосъемные. Компрессионные кольца служат для создания герметичности при сжатии для воспламенения, а маслосъемные для забора смазывающей жидкости со стенки блока цилиндров и предотвращения попадания масла в камеру сгорания.
• Кривошипно-шатунный механизм: передает вращательный момент от поршня к коленвалу. Состоит из поршней, цилиндров, головок, поршневых пальцев, шатунов, картера, коленвала.
Алгоритм работы двигателя достаточно прост: топливо распыляется форсункой в камере сгорания, где перемешивается с воздухом и под воздействием искры образованная смесь воспламеняется.
Образованные газы толкают поршень вниз и вращательный момент передается коленвалу, который передает вращение трансмиссии. С помощью шестеренного механизма происходит движение колес.
Если сотворить бесперебойный цикл воспламенений горючей смеси за определенное количество времени, то получим примитивный двигатель.
Современные моторы основаны на четырехтактном цикле сгорания для превращения топлива в движение транспорта. Иногда такой такт называют в честь немецкого ученого Отто Николауса, сотворивший в 1867 году такт, состоящий из таких циклов: впуск, сжатие, горение, выведение продуктов сгорания.
Описание и предназначение систем:
• Система питания: дозирует образованную смесь воздуха и топлива и подает ее в камеры сгорания — цилиндры двигателя. В карбюраторном варианте состоит из карбюратора, воздушного фильтра, впускного трубоканала, фланца, топливного насоса с отстойником, бензобака, топливопровода.
• Система газораспределения: балансирует процессы впуска горючей смеси и выпуска отработанных газов. Состоит из шестерен, кулачкового вала, пружины, толкателя, клапана.
• Система зажигания: предназначена для подачи тока на контакт свечи для воспламенения рабочей смеси.
• Система охлаждения: уберегает мотор от перегрева, путем циркуляции и охлаждения жидкости.
• Система смазки: подает смазывающую жидкость к трущимся деталям, с целью минимизации трения и износа.
В данной статье рассмотрены понятие двигателя, его виды, описание и назначение отдельных систем, такт и его циклы.
Многие инженеры работают на тем, чтобы минимизировать рабочий объем мотора и существенно увеличить мощность, сократив потребление топлива. Новинки автопрома в очередной раз подтверждают рациональность конструкторских разработок.
Как работает двигатель? Видео
Как работает двигатель — этим вопросом озадачивается каждый второй автолюбитель. Всем интересно, как бьется “сердце” автомобиля. В данной статье покажем как работает двигатель внутреннего сгорания с помощью видео.
Большинству автолюбителей принцип работы двигателя внутреннего сгорания совсем не нужен и не интересен, ведь автомобиль после поломки отправляется в автосервис, где его починят опытные авто мастера. Но есть другая категория людей, которым интересно как устроен автомобиль и как работает двигатель.
Знание основ работы двигателя, и автомобиля в целом, поможет вам сэкономить энную сумму при ремонте автомобиля, когда вас просто хотят обмануть недобросовестные автомастера.
Без знания основ автомобиля и его устройства вы не сможете отремонтировать автомобиль при внезапной поломки вдали от цивилизации, когда поблизости нет авто сервисов и никто вам не сможет помочь. Так что приступим к изучению основ работы автомобиля с помощью видео материала (из цикла передачи “как это устроено”) о работе двигателя.
Устройство двигателя. Видео
Кто хочет детально ознакомиться с работой двигателя, предлагаю изучить статьи:
Устройство двигателя легкового автомобиля
Все мы передвигаемся на автомобилях совершенно разных марок и моделей. Но, немногие из нас даже задумываются над тем, как устроен двигатель нашего автомобиля. По большому счёту, знать на все 100% устройство двигателя легкового автомобиля и не обязательно. Ведь мы все пользуемся, например, мобильными телефонами, но это не означает, что мы обязаны быть гениями радиоэлектроники. Есть кнопка «Вкл», нажал и говори. Но с автомобилем немного другая история.
Ведь неисправный телефон – это всего лишь отсутствие связи с друзьями. А неисправный двигатель автомобиля – это наша жизнь и здоровье. От правильного обслуживания двигателя автомобиля зависят многие моменты движения автомобиля вообще и безопасности людей в частности. Поэтому, скорее всего, будет правильно уделить десять минут, чтобы понять из чего состоит двигатель автомобиля и принцип работы двигателя.
История создания двигателя автомобиля
Мотор (двигатель) в переводе с латыни motor, значит – приводящий в движение. В современном понимании, двигатель – это устройство, которое преобразует какую-либо энергию в механическую. В автомобилестроение наиболее распространенными двигателями являются ДВС (двигатели внутреннего сгорания) различных типов. Годом рождения первого ДВС считается 1801 г. тогда француз Филипп Лебон запатентовал первый двигатель, работающий на светильном газе.
Затем были Жан Этьен Ленуар и Август Отто. Именно Август Отто в 1877 г. получил патент на двигатель с четырёхтактным циклом работы. И до сегодняшнего дня работа двигателя автомобиля, в основе своей работает по этому принципу.
В 1872 г. американцем Брайтоном был представлен первый двигатель на жидком топливе – керосине. Попытка была неудачной. Керосин не хотел активно взрываться внутри цилиндров. А в 1882 г. появился двигатель Готлиба Даймлера, бензиновый и работоспособный.
А теперь давайте разберемся какие все таки бывают типы двигателя автомобиля и к какому типу, прежде всего, можно отнести ваш автомобиль.
Типы двигателей легкового автомобиля?
С учетом того, что наиболее массовым в автомобилестроении является ДВС, рассмотрим, какие же типы двигателей установлены на наших автомобилях. ДВС не является самым совершенным типом двигателя, но благодаря своей 100% автономности, именно он и применяется в большинстве современных авто. Традиционные типы двигателей автомобиля:
- Бензиновые двигатели. Делятся на инжекторные и карбюраторные. Существуют разные типы карбюраторов и системы впрыска. Вид топлива – бензин.
- Дизельные двигатели. Дизельное топливо попадает в цилиндры через форсунки. Преимуществом дизельных двигателей является то, что им не нужно электричество для работы. Только для запуска двигателя.
- Газовые двигатели. Топливом может служить, как сжиженные и сжатые природные газы, так и генераторные газы, полученные путем преобразования твердого топлива (уголь, дерево, торф) в газообразное.
Как устроен двигатель легкового автомобиля? При первом взгляде на разрез двигателя, несведущему человеку хочется убежать. Настолько всё кажется сложным и запутанным. На самом деле, при более глубоком изучении, строение двигателя автомобиля просто и понятно для того, чтобы знать принцип его работы. Знать, и при необходимости применять эти знания в жизни.
- Блок цилиндров – его можно назвать рамой или корпусом двигателя. Внутри блока устроена система каналов для смазки и охлаждения двигателя. Он служит основой для навесного оборудования: головка блока цилиндров, картер и т.д.
- Поршень – пустотелый металлический стакан. Верхняя часть поршня (юбка) имеет специальные канавки для поршневых колец.
- Поршневые кольца. Верхние кольца – компрессионные, для обеспечения высокой степени сжатия воздушно-топливной смеси (компрессия). Нижние кольца – маслосъёмные. Кольца выполняют две функции: обеспечивают герметичность камеры сгорания и играют роль уплотнителей для того, чтобы масло не попадало в камеру сгорания.
- Кривошипно-шатунный механизм. Передаёт возвратно-поступательную энергию движения поршня на коленвал.
- Принцип работы ДВС достаточно прост. Из форсунок топливо подается в камеру сгорания и обогащается там воздухом. Искра от свечи зажигания воспламеняет воздушно-топливную смесь и происходит взрыв. Образовавшиеся газы толкают поршень вниз, тем самым заставляя его передавать своё поступательное движение коленвалу. Коленвал, в свою очередь, передаёт вращательное движение трансмиссии. Далее система шестерён передаёт движение колесам.
А уже колеса автомобиля везут несущий кузов вместе с нами в том направлении, куда нам необходимо. Вот такой принцип работы двигателя, мы уверены, будет вам понятен. И вы будете знать, что ответить, когда в автосервисе недобросовестные работники скажут, что вам нужно поменять компрессию, но на складе осталась одна, и та — импортная. Удачи вам в понимании устройства и принципа работы двигателя автомобиля.
Источник http://www.syl.ru/article/199807/new_elektricheskie-mashinyi-postoyannogo-toka-naznachenie-konstruktsiya-ustroystvo-i-printsip-deystviya
Источник http://autogear.ru/article/420/183/dvigateli-obschego-naznacheniya-ustroystvo-printsip-rabotyi-primenenie-foto/
Источник http://piter-at.ru/raznoe/kak-ustroen-dvigatel-avtomobilya.html