Как работает система зажигания автомобиля

Содержание

Как работает система зажигания автомобиля

Корректные условия для системы зажигания, вернее, базовые условия – это:

  • Искра должна появляться в нужном цилиндре, в соответствии с порядком работы цилиндров.
  • Искра должна возникать своевременно, в нужный момент и с необходимым углом опережения зажигания.
  • Она должна гарантировано воспламенять смесь.
  • Надёжность

Как вы понимаете, у такой системы могут возникать и неполадки, к примеру, пропуски искрообразования, детонация и трудности с запуском двигателя.

В сегодняшнем мире есть несколько видов систем зажигания для автомобилей, контактная, бесконтактная и электронная. Эти системы имеют общие особенности, к примеру, отсутствие распределителя зажигания, который давно уступил место катушке.

В контактной системе зажигания управление накоплением и распределение электрической энергии по цилиндрам осуществляется механическим устройством – прерывателем-распределителем. Витком дальнейшего развития контактной системы зажигания является контактная транзисторная система зажигания, в первичной цепи катушки зажигания которой применен транзисторный коммутатор.

В отличии от контактной, в бесконтактной системе зажигания для управления накоплением энергии используется транзисторный коммутатор, взаимодействующий с бесконтактным датчиком импульсов. Транзисторный коммутатор в данной системе выполняет роль прерывателя. Распределение тока высокого напряжения осуществляется механическим распределителем.

В электронной системе зажигания используется электронный блок управления, с помощью которого производится управление процессом накопления и распределения электрической энергии. В ранних конструкциях электронной системы зажигания электронный блок одновременно управлял системой зажигания и системой впрыска топлива (т.н. объединенная система впрыска и зажигания).

Устройство

Принцип работы системы зажигания заключается в накоплении и преобразовании катушкой зажигания низкого напряжения (12В) электрической сети автомобиля в высокое напряжение (до 30000В), распределении и передаче высокого напряжения к соответствующей свече зажигания и образовании в нужный момент искры на свече зажигания. В работе системы зажигания можно выделить следующие этапы: накопление электрической энергии, преобразование энергии, распределение энергии по свечам зажигания, образование искры, воспламенение топливно-воздушной смеси.

Механический прерыватель осуществляет непосредственное управление процессом накопления (первичной цепью) и отвечает за замыкание/размыкание питания первичной обмотки. Контакты прерывателя можно увидеть, заглянув под крышку распределителя. Пластичная пружина подвижного контакта прижимает его к недвижимому контакту. Их размыкание выполняется только на короткий срок, а конкретно, в момент, когда набегающий кулачок валика привода оказывает давление на молоточек подвижного контакта.

К контактам подключен конденсатор, который не даёт им обгорать. Электроразряд поглощается и искрение уменьшается. Параллельно в цепи создаётся низкое напряжение обратного тока, которое положительно сказывается на исчезновении магнитного поля.

Прерыватель находится в корпусе распределителя зажигания, и это части классической системы зажигания.

Ещё один важный узел – центробежный регулятор опережения зажигания, механизм, предназначенный для автоматического изменения угла опережения зажигания в зависимости от числа оборотов коленчатого вала двигателя.

Центробежный регулятор размещён внутри корпуса прерывателя-распределителя. Как правило, он работает совместно с вакуумным регулятором, оба являются составной частью прерывателя-распределителя. Называется он центробежным от вида силы, использующейся для реализации изменения опережения.

На приводном валу прерывателя расположена пластина, на которой размещены два грузика. Грузики свободно сидят на осях и стянуты пружинами. Причём пружины обладают разной жёсткостью, что необходимо для предотвращения резонанса. При этом, кулачок прерывателя и планка с двумя продольными прорезями надеты на верхнюю часть приводного валика. В продольные прорези планки входят штифты грузиков.

Вращение передаётся от приводного валика к кулачку через грузики, штифты и планку с прорезями. Чем быстрее вращается приводной вал, тем больше расходятся грузики, тем на бо́льший угол проворачивается кулачок по ходу вращения относительно контактной группы прерывателя. С увеличением оборотов угол опережения зажигания увеличивается. С уменьшением числа оборотов центробежная сила уменьшается, пружины стягивают грузики, кулачок поворачивается против хода его вращения, контакты прерывателя замыкаются позже и угол опережения зажигания уменьшается.

Если на двигателе применено бесконтактное электронное зажигание — тогда вместо кулачка проворачивается экран бесконтактного датчика момента искрообразования.

Если механический прерыватель оборудован транзисторным коммутатором, то, в этом случае, он управляет только им, а тот, в свою очередь, отвечает за управление процессом накопления энергии. Такая конструкция существенно превосходит аналогичные устройства без транзисторного коммутатора, так как здесь контактный прерыватель более надежный, чему способствует протекание сквозь него тока меньшей силы, а значит, пригорание контактов во время размыкания практически полностью исключается. Соответственно, конденсатор, параллельно подключенный к контактам прерывателя, тут просто не нужен, а в остальном – система полностью идентична классическому варианту. Обе системы, имеющие механический прерыватель, обладают общим названием — «контактные системы зажигания».

Системы с транзисторным коммутатором, оборудованные бесконтактным датчиком (импульсным генератором), могут быть индуктивного типа, основанными на эффекте Холла или относиться к оптическому типу. В данном случае, место механического прерывателя занимает импульсный датчик-генератор с преобразователем сигналов, который, посредством транзисторного коммутатора, осуществляет управление накопителем энергии. Как правило, датчик-генератор расположен внутри распределителя, конструкция которого ничем не отличается от конструкции аналогичной детали в контактной системе, поэтому указанный узел получил название «датчика-распределителя».

Как оно работает?

Несмотря на то, к какому типу относится та или иная система зажигания, все они имеют несколько общих рабочих этапов, предусматривающих накопление нужного заряда, его высоковольтное преобразование, распределение, образование на свечах искр и возгорание топливной смеси. Любой из них требует слаженной и точной работы, а значит, стоит выбирать только проверенные устройства, доказавшие свою надежность. В этом плане, наилучшим вариантом принято считать электронную систему зажигания, где всем рабочим процессом (подачей искры и ее распределением по свечам) управляет электроника.

Электронная система зажигания – это не отдельный, самостоятельный компонент, а составляющая часть системы управления мотором, которая основывается на работе датчика положения коленвала, датчика, фиксирующего частоту его вращения и датчика массового расхода воздуха. Получив от них нужную информацию, ЭБУ принимает решение касательно момента подачи искры и распределения зажигания. Естественно, в блоке управления уже прописаны определенные команды, выполняющиеся после получения и анализа данных с упомянутых датчиков.

В такой системе воспламенения топливной смеси полностью исключены механические движущиеся части, а благодаря специальным датчикам и особому блоку управления, образование и подача искры проходят намного быстрее и надежнее, нежели у аналогичных систем контактного и бесконтактного типа. Этот факт позволяет улучшить работу мотора, увеличив его мощность и снизив потребление топлива. Более того, нельзя не отметить высокую рабочую надежность устройств данного типа.

Бесконтактное зажигание отличается тем, что не зависит напрямую от размыкания контактов, а главную роль в процессе образования искры здесь выполняет транзисторный коммутатор и специальный датчик. Отсутствие прямой зависимости от качества и чистоты поверхности контактной группы гарантирует более эффективное искрообразование. Однако как и в контактном варианте системы зажигания, здесь также используется прерыватель-распределитель, отвечающий за своевременную передачу тока на свечу зажигания. Рабочий принцип бесконтактной системы предусматривает выполнение некоторых действий.

Когда коленвал двигателя приходит в движение, датчик-распределитель формирует соответствующие импульсы напряжения и направляет их на транзисторный коммутатор, задача которого – создавать импульсы тока в первичной обмотке катушки зажигания. В момент прерывания во вторичной обмотке катушки проходит индуцирование тока высокого напряжения. Он подается на центральный контакт распределителя, а оттуда, посредством проводов высокого напряжения, поступает на свечи зажигания. Последние и осуществляют воспламенение топливовоздушной смеси.

В случае увеличения оборотов коленвала, за регулировку угла опережения зажигания отвечает центробежный регулятор, а при изменении нагрузки на силовой агрегат эта задача возлагается на вакуумный регулятор опережения зажигания.

Принцип работы контактного зажигания несколько отличается от вариантов, приведенных выше. Когда контакт прерывателя пребывает в замкнутом состоянии, ток низкого напряжения проходит по первичной обмотке катушки. В процессе их размыкания, во второй катушке происходит индуцирование тока высокого напряжения, и, посредством высоковольтных проводов, он передается на крышку распределителя, после чего расходится по свечам зажигания с определенным углом опережения зажигания.

Как только обороты коленвала увеличиваются, возрастают и обороты вала прерывателя-распределителя, вследствие чего грузики центробежного регулятора начинают расходиться, перемещая подвижную пластину вместе с кулачками прерывателя. Это приводит к тому, что размыкание контактов происходит несколько раньше, из-за чего увеличивается угол опережения зажигания. С уменьшением оборотов коленвала угол опережения зажигания тоже уменьшается.

Более модернизированным типом контактной системы является ее контактно-транзисторный вариант. Он отличается наличием транзисторного коммутатора в цепи первичной обмотки катушки, управление которым выполняется посредством контактов прерывателя. За счет его использования удалось добиться снижения силы тока в цепи первичной обмотки, что положительно сказалось на длительности эксплуатации контактов прерывателя.

Как работает система зажигания

Цель зажигание Система генерирует очень высокую вольт возраст от автомобиля 12 вольт аккумулятор и посылать это каждой свече зажигания по очереди, зажигая топливно-воздушную смесь в двигатель «s камеры сгорания ,

катушка является компонентом, который производит это высокое напряжение. Это электромагнитное устройство, которое преобразует низкое напряжение (LT) ток от батареи к току высокого напряжения (HT) каждый раз, когда распределитель точки размыкания контакта разомкнуты.

Распределительный блок состоит из металлической чаши с центральным валом, который обычно приводится в движение непосредственно распределительный вал или иногда коленчатый вал ,

В чаше находятся точки размыкания контактов, рычаг ротора и устройство для изменения время зажигания , Он также несет крышка распределителя ,

Крышка распределителя выполнена из непроводящего пластика, и ток подается на ее центральный электрод проводом HT от центра катушки.

Внутри крышки находится больше электродов, часто называемых сегментами, к которым подключены провода свечи зажигания, по одному на цилиндр ,

Роторный рычаг установлен сверху центрального вала и соединяется с центральным электродом при помощи металлической пружины или Подпружиненный щетка в верхней части крышки распределителя.

Ток поступает в колпачок через центральный электрод, проходит в центр рычага ротора через щетку и распределяется на каждую пробку при вращении рычага ротора.

Когда рычаг ротора приближается к сегменту, размыкатель контакта размыкается, и ток ВТ проходит через рычаг ротора к соответствующему проводу свечи зажигания.

Точки размыкания контактов установлены внутри распределителя. Они действуют как переключатель синхронно с двигателем, который отключает и повторно подключает низковольтное напряжение 12 В (LT) схема к катушке.

Точки открываются кулачками на центральном валу и снова закрываются пружинным рычагом на подвижном контакте.

При закрытых точках ток LT течет от батареи к первичные обмотки в катушке, а затем на землю через точки.

Когда точки открыты, магнитное поле в первичной обмотке разрушается и ток высокого напряжения (HT) индуцируется в вторичные обмотки ,

Этот ток передается на свечи зажигания через крышку распределителя.

На четырехцилиндровом двигателе четыре кулачка. При каждом полном обороте вала точки открываются четыре раза. Шестицилиндровые двигатели имеют шесть кулачков и шесть электродов в крышке.

Положение точек и корпуса распределителя относительно центрального вала можно регулировать вручную.

Это меняет время искра чтобы получить точную настройку (см. Как работает синхронизация двигателя ).

Дальнейшие изменения происходят автоматически, поскольку частота вращения двигателя изменяется в зависимости от открытия дроссельной заслонки.

В некоторых современных системах зажигания микроэлектроника обеспечивает оптимальное время зажигания для всех скоростей и условий нагрузки двигателя (см. Как работает синхронизация двигателя ).

Свечи зажигания вкручиваются в сгорание камеры в крышка цилиндра ,

Ток HT проходит от каждого сегмента на крышке распределителя вниз, к клеммам заглушки.

Затем он проходит вниз по центральному электроду, который изолирован по всей его длине, к носику пробки.

Боковой электрод, соединенный с корпусом штепселя, выступает чуть ниже центрального, причем зазор между ними обычно составляет от 0,025 дюйма (0,6 мм) до 0,035 дюйма (0,9 мм).

Как работает система зажигания автомобиля

Сложный процесс системы зажигания транспортного средства требует точного хронометража со стороны различных задействованных систем. Запуск автомобиля включает в себя гораздо больше, чем просто поворот ключа в замке зажигания; для запуска автомобиля требуется, чтобы каждая система работала в унисон. После поворота ключа начинается процесс зажигания топлива и питания двигателя. Если где-то вдоль пути возникает проблема, двигатель не перевернется и владелец транспортного средства должен отремонтировать ее.

дело времени

Каждая система в двигателе настроена на работу в определенное время в процессе сгорания. Когда этот процесс не работает должным образом, двигатель подвергается пропускам зажигания, снижению мощности и снижению эффективности использования топлива. После поворота ключа включается соленоид стартера, позволяя скачку напряжения от батареи достигать свечей зажигания через провода свечей зажигания. Это позволяет зажигать свечу зажигания, воспламеняя топливно-воздушную смесь в камере, которая перемещает поршень вниз.Участие системы зажигания в этом процессе происходит задолго до возникновения искры и включает выбор систем, предназначенных для облегчения процесса генерации искры.

Рекомендуется к прочтению  Как подсоединяются провода к бабине электронное зажигание. Распиновка, схема подключения и проверка катушки зажигания ваз

Свечи зажигания и провода

Электрический заряд от батареи через соленоид стартера зажигает топливно-воздушную смесь в камере сгорания. Каждая камера содержит одну свечу зажигания, которая получает электричество для зажигания через провода свечи зажигания. Вы должны держать свечи зажигания и провода в хорошем состоянии, иначе автомобиль может пострадать от перебоев зажигания, плохой мощности и производительности, а также ухудшения расхода топлива.Вы также должны убедиться, что механик правильно запирает свечи зажигания, прежде чем устанавливать их в автомобиль. Искра возникает, когда электрический ток прыгает зазор. Неправильно зажженные свечи зажигания приводят к плохой работе двигателей.

Другие проблемные области, когда речь идет о свечах зажигания, включают накопление отложений на области электрода. Марка и модель автомобиля помогают определить, использует ли он холодные или горячие свечи. Горячие свечи горят горячее и, таким образом, сжигают больше этих отложений. Холодные пробки вступают в игру в высокопроизводительных двигателях.

Хороший способ определить провод свечи зажигания, который необходимо заменить, — запустить автомобиль в темной зоне. Во время работы двигателя проверьте провода, идущие от свечи зажигания к крышке распределителя. Приглушенное освещение позволит вам увидеть любые неуместные искры в системе; крошечные электрические дуги обычно выпрыгивают из трещин и разрывов в изношенных проводах свечей зажигания.

Повышение напряжения с катушкой зажигания

Электрическое напряжение от батареи сначала проходит через катушку зажигания на пути к свечам зажигания.Усиление этого низковольтного заряда является основным назначением катушки зажигания. Ток течет вдоль первичной катушки, один из двух наборов намотанной проволоки, найденной внутри катушки зажигания. Кроме того, обернутый вокруг первичной катушки, вы найдете вторичную катушку, которая содержит на сотни витков больше, чем первичная катушка. Точки прерывания нарушают протекание тока через первичную катушку, вызывая коллапс магнитного поля в катушке, и создают магнитное поле во вторичной катушке. Этот процесс создает высоковольтный электрический ток, который подается в распределитель и на свечи зажигания.

Функция крышки ротора и распределителя

Распределитель использует систему крышки и ротора для распределения высоковольтного заряда на соответствующий цилиндр. Ротор вращается, распределяя заряд по каждому цилиндру, когда он проходит контакт для каждого. Ток дуг через небольшой зазор между ротором и контактом, когда они проходят друг через друга.

К сожалению, высокие температуры, возникающие при прохождении заряда, могут привести к износу распределителя, особенно ротора.При настройке на более старое транспортное средство механик обычно заменяет ротор и крышку распределителя как часть процесса.

Двигатели без дистрибьютора

Более новые автомобили отказываются от использования центрального распределителя и вместо этого используют катушку на каждой свече зажигания. Подключенный непосредственно к компьютеру двигателя или блоку управления двигателем (ECU), это позволяет системе управления автомобилем более точно контролировать время зажигания свечи зажигания. Эта система устраняет необходимость в распределителе и проводах свечей зажигания, поскольку система зажигания подает заряд на вилку.Такая настройка повышает эффективность использования топлива, снижает выбросы и увеличивает общую мощность.

Дизельные двигатели и свечи накаливания

В отличие от бензинового двигателя, дизельные двигатели используют свечу накаливания вместо свечи зажигания для предварительного нагрева камеры сгорания перед запуском. Тенденция блока цилиндров и головки поглощать тепло, возникающее при сжатии топливно-воздушной смеси, иногда предотвращает возгорание, особенно в холодную погоду. Кончик свечи накаливания обеспечивает тепло, когда топливо поступает в камеру сгорания, распыляя его непосредственно на элемент, что позволяет ему воспламениться, даже когда на улице холодно.

Как работает система зажигания | Вагоностроение

Система зажигания — это система, которая состоит из устройств, которые служат для создания электрической искры высокого напряжения. Система зажигания генерирует очень высокое напряжение (от 20 до 30 тысяч вольт) от автомобильного аккумулятора 12 Вольт. Это напряжение необходимо для воспламенения топливовоздушной смеси в камерах сгорания двигателя. Свечи зажигания подают искру высокого напряжения в камеры сгорания в определенное время.

Основные виды зажигания системы:

  • Система зажигания в контактной точке;
  • Бесконтактная система зажигания;
  • Микропроцессорная система зажигания.

Все типы систем зажигания рассчитаны на одно — создание высоковольтного напряжения и отличаются только способами создания управляющего импульса.

Высоковольтное производство

Компонентом, который создает высокое напряжение, является катушка зажигания.Работа катушки зажигания заключается в преобразовании тока низкого напряжения (от аккумулятора) в ток высокого напряжения (когда контакты распределителя разомкнуты).

Компоненты системы зажигания

Распределитель зажигания используется для распределения высоковольтного электрического зажигания на цилиндры двигателя. Распределитель зажигания состоит из чаши, выключателя, центрального вала и распределительного кулачка.

Привод распределительного устройства обычно осуществляется непосредственно от распределительного вала.Иногда коленвал приводит в движение распределитель.

Точки контакта находятся в чаше. Там Роторный рычаг и устройство для изменения времени зажигания внутри чаши тоже. Распределитель крышка закрывает чашу.

Распределение тока

Центральный электрод находится на крышке распределителя, которая изготовлен из непроводящего пластика. Катушка подает ток высокого напряжения на Центральный электрод. Внутри крышки есть сегменты. Эти электроды или сегменты подключаются к проводам свечей зажигания.

В дизельных двигателях отсутствует принудительное зажигание, есть самовозгорание.

Ротор и центральный электрод соединены между собой пружина в крышке распределителя. Когда рычаг ротора вращается, ток входит к каждой свече зажигания через центральный электрод и щетку. Как На плечо ротора приходит сегмент, размыкающий контакт разомкнут. Высокое напряжение ток проходит к соответствующему проводу свечи зажигания через плечо ротора. точки размыкания контактов действуют как выключатель, который отключает и снова подключает цепь низкого напряжения к катушке (цепь высокого напряжения).

кулачки на центральном валу открывают точки (четырехцилиндровый Двигатель имеет четыре кулачка, поэтому при каждом полном обороте вала точки открываются четырьмя раз), а затем пружинный рычаг закрывает их. Когда точки открыты, магнитный поле в первичной обмотке падает, поэтому ток высокого напряжения индуцированный. Наконец, ток передается на свечи зажигания через крышка распределителя

В определенные моменты времени к свечам зажигания подается искра.

Если вам нужно, вы можете изменить время искры, вы следует отрегулировать соотношение точек и тела распределителя в отношение к центральному валу.

В современных автомобилях системы зажигания имеют специальную микроэлектронику которые обеспечивают оптимальную регулировку времени зажигания, независимо от частоты вращения двигателя и нагрузка на двигатель.

Схема системы зажигания

Свечи зажигания установлены в камерах сгорания в головке цилиндров двигателя.

Прохождение тока высокого напряжения

Сегмент на крышке распределителя — штепсельные выводы — штепсельная вилка колпачки — центральный электрод — носик штекера.

Зазор между боковым электродом и центральным обычно составляет от 0,6 мм до 0,9 мм.

Как работает система зажигания автомобиля

Для принудительного воспламенения топливовоздушной смеси, поступившей в цилиндр бензинового двигателя, используется энергия искры высоковольтного электрического разряда, возникающего между электродами свечи зажигания. Системы зажигания предназначены для того, чтобы увеличить напряжение автомобильной аккумуляторной батареи до величины, необходимой для возникновения электрического разряда и, в требуемый момент, подать это напряжение на соответствующую свечу зажигания. Сведём основные системы в таблицу и опишем работу таких систем.

ОбозначениеОписание
ОтечественноеЗарубежное
ксзKSZКлассическая контактная с прерывателем-распределителем
ктсзHKZk, JFU4Электронная с накоплением энергии в системе и контактным датч.
БТСЗHKZi, TSZ-2Бесконтактная транзисторная с индукционным датчиком
БТСЗHKZh, EZK,TZ28HБесконтактная транзисторная с накоплением энергии в ёмкости с датчиком Холла
КТСЗTSZkКонтактная транзисторная с накоплением энергии в индуктивн.
БТСЗTSZiБесконтактная транзисторная с накоплением энергии в индуктивности с индукционным датчиком
БТСЗTSZhБесконтактная транзисторная с накоплением энергии в индуктивности с датчиком Холла
МСУДVSZ, EZLЭлектронная система зажигания статического типа

Подробно рассмотрим работу только использующихся в настоящее время систем зажигания.

В первой блок-схеме отдельно выделен Блок Управления Зажиганием (БУЗ). Раскроем этот прямоугольник и приведём несколько структурных схем построения систем зажигания.

В таких системах датчиком первичных импульсов (датчик вращения) являются контакты механического прерывателя, расположенного в распределителе зажигания(трамблёра), который механически связан коленвалом двигателя через шестерни. Один оборот вала трамблёра осуществляется за два оборота коленвала двигателя. Электрический разряд создаётся при помощи механического прерывателя, приводимого в действие двигателем. Для получения высокого напряжения применяется катушка зажигания. В зависимости от способа размыкания первичной цепи катушки зажигания, по которой проходит большой ток, различают классической батарейное зажигание, транзисторное зажигание и тиристорно-конденсаторное зажигание. В таких системах роль силового реле выполняют контакты прерывателя, транзистор или тиристор.

Рис. Схема контактной системы зажигания: 1 — свечи зажигания, 2 — прерыватель-распределитель, 3 — выступ кулачка, 4 — упор, 5 — аккум. батарея, 6 — генератор, 7 — выключатель зажигания, 8 — катушка зажигания, 9 — конденсатор.

Нa приведённом выше рисунке показана схема самой простой контактной системы зажигания (КСЗ). Устройство катушки зажигания рассмотрим отдельно, а сейчас напомним, что катушка — это трансформатор с двумя обмотками намотанными на специальный сердечник. Вначале намотана вторичная обмотка тонким проводом и большим количеством витков, а сверху на неё намотана первичная обмотка толстым проводом и небольшим количеством витков. При замыкании контактов первичный ток постепенно нарастает и достигает максимального значения, определяемого напряжением аккумуляторной батареи и омическим сопротивлением первичной обмотки. Нарастающий ток первичной обмотки встречает сопротивление э.д.с. самоиндукции, направленное встречно напряжению аккумуляторной батареи.

Когда контакты замкнуты, по первичной обмотке протекает ток и создает в ней магнитное поле, которое пересекает и вторичную обмотку и в ней индуцируется ток высокого напряжения. В момент размыкания контактов прерывателя как в первичной, так и во вторичной обмотках индуцируется э.д.с. самоиндукции. Согласно закону индукции вторичное напряжение тем больше, чем быстрее исчезает магнитный поток, созданный током первичной обмотки, чем больше отношение чисел витков и чем больше первичный ток в момент разрыва.

Для повышения вторичного напряжения и уменьшения обгорания контактов прерывателя параллельно контактам включают конденсатор.

Ниже представлены осциллограммы электрических сигналов в цепях зажигания.

Рис. Осциллограммы электрических сигналов в цепях зажигания: 1 — первичный ток, 6 — контакты прерывателя разомкнуты, 7 — контакты замкнуты.

При некотором значении вторичного напряжения между электродами свечи зажигания возникает электрический разряд. Из-за возрастания тока во вторичной цепи вторичное напряжение резко падает до, так называемого, напряжения дуги, которое поддерживает дуговой разряд. Напряжение дуги остается почти постоянным до тех пор, пока запас энергии не станет меньше некоторой минимальной величины. Средняя продолжительность батарейного зажигания составляет 1,4 мс. Обычно этого достаточно для воспламенения топливовоздушной смеси. После этого дуга исчезает, а остаточная энергия расходуется на поддержание затухающих колебаний напряжения и тока. Продолжительность дугового разряда зависит от величины запасённой энерги, состава смеси, частоты вращения коленвала, степени сжатия и пр. При увеличении частоты вращения коленвала время замкнутого состояния контактов прерывателя уменьшается и первичный ток не успевает нарасти до максимальной величины. Из-за этого уменьшается запас энергии, накопленной в магнитной системе катушки зажигания и понижается вторичное напряжение.

Отрицательные свойства систем зажигания с механическими контактами проявляются при очень малых и высоких частотах вращения юленвала. При малых частотах вращения между контактами прерывателя возникает дуговой разряд, поглощающий часть энергии, а при высоких частотах вращения вторичное напряжение уменьшается из-за «дребезга» контактов прерывателя. «Дребезг» возникает когда при замыкании контактов подвижный контакт ударяется о неподвижный с энергией, определяемой массой и скоростью подвижного контакта, а затем после незначительной упругой деформации соприкасающихся поверхностей отскакивает, разрывая уже замкнутую цепь. После размыкания, подвижный контакт под дейсткием пружины, снова ударяется о неподвижный контакт Из-за такого «дребезга» контактов уменьшается действительное время замкнутого состояния и, соответственно, энергия зажигания и величина вторичного напряжения.

Контактные системы зажигания перестали справляться со своими функциями при увеличении оборотов двигателей, числа цилиндров, использовании более бедных рабочих смесей. Появилась необходимость применения электронных систем зажигания. Формирование момента ценообразования может осуществляться как обычной контактной группой (КТСЗ), так и с использованием специальных датчиков(бесконтактные системы).

Рис. Схема контактно-транзисторной системы зажигания: 1 — свечи зажигания, 2 — распределитель зажигания, 3 — коммутатор, 4 — катушка зажигания, К — коллектор, Э — эмиттер, Б — база, R — резистор.

Рассмотрим функциональную схему контактнотранзисторной системы зажигания. На рисунке, приведённом рядом показан фрагмент такой схемы. Механические контакты переключают только управляющий ток базы транзистора, который значительно меньше первичного тока, протекающего между эмиттером и коллектором. Для защиты полупроводникового устройства, названного коммутатором, приходилось уменьшать величину э.д.с. самоиндукции в первичной цепи путём снижения индуктивности первичной обмотки. Индуктивность первичной обмотки уменьшается быстрее, чем сё сопротивление. Уменьшается э.д.с. самоиндукции и меньше препятствует увеличению первичного тока.

Из-за уменьшения индуктивности первичной обмотки и величины э.д.с. самоиндукции для получения неизменного вторичного напряжения увеличивают и коэффициент трансформации катушки зажигания.

Изменение скорости нарастания и максимальной величины первичного тока в классической и транзисторной системах зажигания представлено наследующем графике.

Рекомендуется к прочтению  Регулировка зажигания ВАЗ 2106: как выставить зажигание

Рис. График: 1 — транзисторное зажигание, 2 — катушечное зажигание, 3 — момент размыкания

Поскольку контакты прерывателя находятся под напряжением только аккумуляторной батареи, то образующаяся при размыкании незначительная дуга позволяет обойтись без конденсатора. Контакты подвержены механическому износу и сохраняется возможность «дребезга».

Отличие электронных систем зажигания состоит в том, что коммутирование и разрыв тока в первичной обмотке катушки зажигания осуществляется не замыканием и размыканием контактов, а открыванием(проводящее состояние) и запиранием (отсечкой) мощного выходного транзистора. Это позволяет увеличить значение тока разрыва до 8 — 10 А, что позволяет в несколько раз увеличить энергию, запасаемую катушкой зажигания. Бесконтактные системы зажигания используют для подачи сигнала различные типы датчиков. Ниже приведём блок-схемы построения систем зажигания.

В приведенных выше системах зажигания коммутатор находится внутри ЭБУ двигателем.

Приведённые выше схемы систем управления зажиганием применяют многокатушечное построение. Катушки могут быть индивидуальными, вставленными в свечной туннель(СОР) с коммутатором встроенным в ЭБУ двигателем. Иногда одна встроенная в свечной туннель катушка обслуживает два цилиндра (к другой свече идёт ВВ провод). Встречаются системы, в которых коммутатор интегрирован в единый МОДУЛЬ ЗАЖИГАНИЯ, причём такой модуль может быть индивидуальным на цилиндр или отдельным блоком обслуживающим все цилиндры. Встречаются системы у которых на свечи одевается единый модуль, объединяющий в себе систему зажигания и датчики вращения и детонации (СААБ, МЕРСЕДЕС). У каждой системы есть свой достоинства и недостатки и только производитель решает какую систему или симбиоз разных систем применить и создать головную боль диагностам и пользователям автомобилей.

Опишем кратко только основные типы датчиков:

  • индукционный (генераторного типа)
  • датчик Холла (на одноимённом эффекте)
  • оптический датчик

Функциональная схема системы зажигания, построенная на использовании индукционного датчика показана рядом.

Рис. Схема системы зажигания с использованием индукционного датчика: 1 — свечи зажигания, 2 — датчик-распределитель, 3 — коммутатор, 4 — катушка зажигания.

Индукционный датчик представляет собой однофоазный генератор переменного тока с ротором на постоянных магнитах, число которых равно числу цилиндров. Мощность выходного сигнала датчика мала, поэтому выходные сигналы предварительно формируются и усиливаются. Обычно такие датчики устанавливаются в распределителе зажигания. В настоящее время такие датчики не применяются.

Часто применяемым датчиком частоты вращения или положения является датчик на эффекте Холла. Рядом приведён фрагмент электросхемы системы зажигания, использующей такой датчик.

Рис. Схема системы зажигания с использованием датчика на эффекте Холла: 1 — свечи зажигания, 2 — датчик Холла, 3 — коммутатор, 4 — распределитель зажигания, 5 — катушка зажигания.

Принцип действия такого датчика основан на изменении выходного сигнала в результате прерывания магнитного потока (экранирование), воздействующего на чувствительный элемент Холла (электросхема с питающим напряжением 5 или 12 В). Расположен обычно в распределителе зажигания, но может быть установлен и в других местах (маркерный диск коленвала или распредвала).

Распространенными являются и оптические датчики (особенно на ам производства Японии). Принцип действия оптических датчиков основан на периодическом прерывании светового потока, излучаемого светодиодом. Маркерный диск с отверстиями механически связан с механизмом ГРМ. Отверстия на диске проходят мимо излучателя и поток света попадает на фотодиод. После усиления напряжения фотодиода получается напряжение импульсной формы — обычно прямоугольные импульсы.

Разрабатывалась и ранее использовалась тиристорная система зажигания. Энергия для искрового разряда в тиристорных системах накапливается в конденсаторе, а в качестве силового реле применялся тиристор. Катушка зажигания в этих системах не накапливает энергию, а лишь преобразует напряжение. Тиристорные системы применялись на мощных и высокооборотных двигателях. Скорость нарастания вторичного напряжения в тиристорной системе примерное 10 раз больше, чем в классической или транзисторной системах зажигания, поэтому пробой искрового промежутка свечи надёжно обеспечивается даже при загрязненных и покрытых нагаром изоляторах свечи. Сравнивать различные системы зажигания можно по различным характеристикам:

  • зависимость вторичного напряжения от частоты вращения коленвала двигателя;
  • продолжительность электрического разряда;
  • расход мощности;
  • надёжность схемы;
  • потребность в обслуживании;
  • чувствительность к шунтированию искрового промежутка свечи.

На рядом приведённом графике показано изменение вторичного напряжения U2 в зависимости от частоты следования разрядов f для различных систем зажигания.

При тиристорной системе зажигания вторичное напряжение можно считать постоянным во всём диапазоне частот вращения, а наибольшее снижение вторичного напряжения наблюдается в классической системе зажигания. При сравнении потребляемой мощности различными системами, можно констатировать, что электронные системы потребляют значительно большую мощность, чем классическая система. В классической и транзисторной системах зажигания продолжительность электрического разряда почти одинакова (около 1 мс) и является достаточной, а при конденсаторной (тиристорно-транзисторной) очень мала и составляет около 300 мкс.

Рис. Тирристорная система зажигания — график

Наименее чувствительна к шунтированию искрового промежутка свечи тиристорная (конденсаторная) система благодаря быстрому нарастанию вторичного напряжения.

В современных системах управления система зажигания не выделяется, а является частью единой системы управления двигателем. В таких системах используются индивидуальные или парные (работающие на два цилиндра одновременно) катушки зажигания, позволяющие создавать искровой разряд в цилиндре в конкретный вычисленный момент времени. При расчёте момента ценообразования учитывается температура двигателя, состав отработанных газов, скорость движения и другие параметры двигателя, а также учитывается информация полученная по сетевой шине от других электронных блоков управления. Одновременно с моментом искрообразования ЭБУ двигателем управляет моментом открытия впускных и выпускных клапанов, положением дроссельной заслонки, моментом и длительностью впрыска топлива и другими параметрами.

В заключении общего описания принципов построения систем зажигания отметим, что во всех системах используются катушки зажигания для формирования высоковольтного напряжения на электродах свечи зажигания. Более подробно описание процессов, проходящих в ЭБУ зажиганием, коммутаторах, катушках зажигания и формы осциллограмм будут приведены при описании конкретных элементов систем управления. У каждой системы есть свои преимущества и недостатки, поэтому различные разработчики и производители для конкретных систем управления и конкретных двигателей применяют те или иные системы зажигания. Иногда это синтез различных систем.

Разновидности систем зажигания

Благодаря системе зажигания авто в определенный момент работы двигателя производится подача на свечи зажигания искрового разряда. Данная схема системы зажигания применяется в бензиновых моторах. В дизельных двигателях система зажигания работает следующим образом, в момент сжатия происходит впрыск топлива. Существуют некоторые марки американских автомобилей, в которых система зажигания, а точнее ее импульсы подаются непосредственно в блок управления погружаемым топливным насосом.

Все существующие системы зажигания разделяются на три вида:

  • Контактная схема, в которой импульсы создаются непосредственно во время работы на разрыв контактов;
  • Бесконтактная схема, где при помощи электронно-транзисторного устройства (коммутатора) создаются управляющие импульсы. Коммутатор нередко еще называют генератором импульсов.
  • Микропроцессорная схема, в которой электронное устройство управляет моментом зажигания.

В двухтактных двигателях без внешнего источника питания применяется система зажигания типа «магнето». Принцип работы «магнето» заключается в создании ЭДС, в момент вращения в катушке зажигания постоянного магнита по заднему фронту импульса.

Все описанные типы систем зажигания отличаются только способом создания управляющего импульса.

Устройство системы зажигания

На рисунке представлена система зажигания, которая применяется в бензиновых автомобилях.

Рассмотрим более подробно устройство и схему системы зажигания авто.

  • источник питания (аккумуляторная батарея и автомобильный генератор);
  • накопитель энергии;
  • выключатель зажигания;
  • блок управления накоплением энергии (микропроцессорный блок управления, прерыватель, транзисторный коммутатор);
  • блок распределения энергии по цилиндрам (электронный блок управления, механический распределитель);
  • свечи зажигания;
  • высоковольтные провода.

Источником питания для системы зажигания выступает аккумуляторная батарея непосредственно в момент запуска мотора, и генератор во время работы двигателя.

Накопитель применяется для аккумуляции и преобразования достаточного количества энергии, которая используется на создание электрического разряда в электродах свечи зажигания. Современная система зажигания автомобиля может применять емкостной или индуктивный накопитель.

Индуктивный накопитель представляет собой катушку зажигания (автотрансформатор), первичная обмотка у которой, подключается к полюсу плюсовому, а минусовой полюс подключается через устройство разрыва. В процессе работы устройства разрыва, возьмем для примера кулачки зажигания, в первичной обмотке наводится напряжение самоиндукции. В это время во вторичной обмотке создается повышенное напряжение, необходимое для пробоя на свече воздушного зазора.

Емкостной накопитель представлен в виде емкости, которая заряжается при помощи повышенного напряжения. В нужный момент отдает всю энергию на свечу зажигания.

Блок управления накоплением энергии предназначен для определения начального момента накопления энергии, а также момента его передачи на свечу зажигания.

Выключатель зажигания – электрический или механический контактный блок для подачи в систему зажигания напряжения. Выключатель зажигания многим автомобилистам известен, как «замок зажигания». Ему отводится две функции: подача напряжения непосредственно на втягивающее реле стартера и подача напряжения в бортовую сеть автомобиля.

Устройство распределения по цилиндрам применяется для подачи в определенный момент энергии к свечам зажигания от накопителя. Данный элемент системы зажигания двигателя состоит из блока управления, коммутатора и распределителя.

Автомобилистам наиболее известно это устройство, как «трамблер», который является распределителем зажигания. Трамблер распределяет по проводам высокое напряжение на свечи цилиндров. Как правило, в распределителе присутствует кулачковый механизм.

Свеча зажигания – устройство с двумя электродами, которые находятся друг от друга на определенном расстоянии от 0.15 до 0,25 мм. Свеча состоит из фарфорового изолятора, который плотно насажен на металлическую резьбу, электродом служит центральный проводник, а вторым электродом выступает резьба.

Высоковольтные провода представляют собой одножильные кабеля с усиленной изоляцией. Проводник может быть выполнен в виде спирали, что поможет избавиться от помех в радиодиапазоне.

Принцип работы системы зажигания

Разделим работу системы зажигания на следующие этапы:

  • аккумуляция электрической энергии;
  • трансформация (преобразование) энергии;
  • разделение по свечам зажигания энергии;
  • образование искры;
  • разжигание топливно-воздушной смеси.

На примере классической системы зажигания рассмотрим принцип работы. В процессе вращения вала привода трамблера приводятся в действие кулачки, подаваемые на обмотку первичную автотрансформатора напряжение 12 вольт.

В момент подачи напряжения на трансформатор, наводится ЭДС самоиндукции в обмотке и вследствие этого, возникает высокое напряжение до 30000 вольт на вторичной обмотке. После чего в распределитель зажигания (бегунок) подается высокое напряжение, который в момент вращения подает напряжение на свечи. 30000 вольт достаточно, чтобы пробить воздушный зазор свечи искровым зарядом.

Система зажигания автомобиля должна быть идеально отрегулирована. Если будет позднее или раннее зажигание, то двигатель внутреннего сгорания может потерять свою мощность или появится повышенная детонация, а это очень не понравится вашей шестерке (ВАЗ 2106).

Автомобильный мотор еще в первых своих модификациях представлял собой сложную конструкцию, состоящую из ряда систем, работающих воедино. Одним из основных компонентов любого бензинового мотора является система зажигания. Об ее устройстве, разновидностях и особенностях мы сегодня и поговорим.

Система зажигания

Система зажигания автомобиля представляет собой комплекс из приборов и устройств, которые работают на обеспечение своевременного появления электрического разряда, воспламеняющего смесь в цилиндре. Она является неотъемлемой деталью электронного оборудования и в своем большинстве завязана на работе механических компонентов мотора. Этот процесс присущ всем моторам, которые не используют для воспламенения сильно нагретый воздух (дизель, компрессионные карбюраторные). Искровое воспламенение смеси применяется и в гибридных моторах, работающих на бензине и газу.

Принцип работы системы зажигания зависит от ее вида, но если обобщать ее работу, можно выделить следующие этапы:

  • процесс накопления высоковольтного импульса;
  • проход заряда через повышающий трансформатор;
  • синхронизация и распределения импульса;
  • возникновение искры на контактах свечи;
  • поджог топливной смеси.

Важным параметром является угол или момент опережения – это время, в которое осуществляется поджог воздушно-топливной смеси. Подбор момента происходит так, чтобы предельное давление возникало при попадании поршня в верхнюю точку. В случае с механическими системами его придется выставлять вручную, а в электронно-управляемых системах настройка происходит автоматически. На оптимальный угол опережения влияет скорость движения, качество бензина, состав смеси и другие параметры.

Классификация систем зажигания

Основываясь на методе синхронизации зажигания, различают схемы контактные и бесконтактные. По технологии формирования угла опережения зажигания можно выделить системы с механической регулировкой и полностью автоматические или электронные.

Исходя из типа накопления заряда, для пробития искрового промежутка, рассматривают устройства с накоплением в индуктивности и с накоплением в емкости. По способу коммутации первичной цепи катушки бывают – механические, тиристорные и транзисторные разновидности.

Узлы систем зажигания

Все существующие виды систем зажигания различаются способом создания контролирующего импульса, в остальном их устройство практически не отличается. Поэтому можно указать общие элементы, которые являются неотъемлемой частью любой вариации системы.

Питание – первичным, служит аккумулятор (задействуется при пуске), а при работе – эксплуатируется напряжение, которое производит генератор.

Выключатель – устройство, которое необходимо для подачи питания на всю систему или его отключения. Выключателем служит замок зажигания или управляющий блок.

Накопитель заряда – элемент необходимый для концентрации энергии в нужном объеме, для воспламенения смеси. Существует два типа компонентов для накопления:

  • Индуктивный – катушка, внутри которой расположился повышающий трансформатор который создает достаточный импульс для качественного поджога. Первичная обмотка устройства питается от плюса батареи и приходит через прерыватель к ее минусу. При размыкании первичного контура прерывателем на вторичном создается высоковольтный заряд, который и передается на свечу.
  • Емкостный – конденсатор, который заряжается повышенным напряжением. В нужное время накопленный заряд по сигналу передается на катушку.
Рекомендуется к прочтению  Как включить зажигание без ключа

Схема работы в зависимости от вида накопления энергии

Свечи – изделие, состоящее из изолятора (основа свечи), контактного вывода для подключения высоковольтного провода, металлической оправы для крепления детали и двух электродов, между которыми и образуется искра.

Система распределения – подсистема, предназначенная для направления искры на нужный цилиндр. Состоит из нескольких компонентов:

  • Распределитель или трамблер – устройство, сопоставляющее обороты коленвала и соответственно – рабочее положение цилиндров с кулачковым механизмом. Компонент может быть механическим или электронным. Первый – передает вращение мотора и посредством специального бегунка распределяет напряжение от накопителя. Второй (статический) исключает наличие вращающихся частей, распределение происходит благодаря работе блока управления.
  • Коммутатор – прибор, генерирующий импульсы заряда катушки. Деталь присоединяется к первичной обмотке и разрывает питание, генерируя напряжение самоиндукции.
  • Блок управления – устройство на микропроцессорах, определяющее момент передачи тока в катушку на основании показаний датчиков.

Провод – одножильный высоковольтный проводник в изоляции, соединяющий катушку с распределителем, а также контакты коммутатора со свечами.

Магнето

Одной из первых систем зажигания является – магнето. Она состоит из генератора тока, который создает разряд исключительно для искрообразования. Состоит система из постоянного магнита, который приводится в движение коленчатым валом и катушки индуктивности. Искру, способную пробить искровой промежуток генерирует повышающий трансформатор, одной частью которого служит грубая обмотка катушки индуктивности. Для повышения напряжения используют часть обмотки генератора, которая соединена с электродом свечи.

Система зажигания с магнето

Контроль за подачей искры может быть контактный, выполненный в виде прерывателя или бесконтактный. При бесконтактном методе подачи искры применяются конденсаторы, которые улучшают качество искры. В отличие от представленных далее схем зажигания, магнето не требуется аккумулятор, оно легкое и активно применяется в компактной технике – мотокосах, бензопилах, генераторах и т.д.

Контактная система зажигания

Устаревшая, распространенная схема воспламенения топливной смеси. Отличительной особенностью системы является создание высокого напряжения, вплоть до 30 тысяч В на свечи. Создает такое высокое напряжение катушка, которая соединена с распределительным механизмом. Импульс на катушку передается благодаря специальным проводам, соединенным с контактной группой. При размыкании кулачков происходит формирование разряда и искры. Устройство также выполняет роль синхронизатора, так как момент образования искры должен совпадать с нужным моментом такта сжатия. Данный параметр устанавливается посредством механической регулировки и сдвига искры на более раннюю или позднюю точку.

Уязвимой частью такого варианта является естественный механический износ. Из-за него меняется момент образования искры, он нестабильный для различных положений бегунка. Ввиду чего появляются вибрации мотора, падает его динамика, ухудшается равномерность работы. Тонкие настройки позволяют избавиться от явных неисправностей, но проблема может возникнуть повторно.

Преимуществом контактного зажигания является его надежность. Даже при серьезном износе деталь будет работать безотказно, позволяя мотору работать. Схема не прихотлива к температурным режимам, практически не боится влаги или воды. Такой вид зажигания распространен на старых автомобилях и по сей день используется на ряде серийных моделей.

Бесконтактное зажигание

Принципиальная схема работы бесконтактной системы несколько отличается. Она сохраняет трамблер, как элемент конструкции, но он лишь выполняет функцию синхронизации цилиндров и отсылает импульс на коммутатор. В свою очередь транзисторный элемент, синхронизируется с показателем датчика и определяет угол зажигания, а также другие настройки – автоматически.

Преимущество системы – стабильность качества искрообразования, которое не зависит от ручных настроек или сохранности поверхности контактов. Если рассматривать превосходство данного варианта над контактной схемой, можно выделить:

  • система генерирует искру высокого качества постоянно;
  • устройство системы зажигания исключает ухудшение ее работы вследствие износа или загрязнения;
  • отсутствует необходимость производить тонкие настройки угла зажигания;
  • не приходится следить за состоянием контактов, контролировать их угол замыкания и другие настройки.

В результате использования бесконтактной системы можно наблюдать снижение расхода топлива, улучшение динамических характеристик, отсутствие сильных вибраций мотора, стабильная искра позволяет облегчить холодный пуск.

Электронное зажигание

Современная, наиболее совершенная схема, которая полностью исключает наличие подвижных частей. Для получения необходимых данных о положении коленвала и других применяются специальные датчики. Далее электронный блок управления производит расчеты и посылает соответствующие импульсы на рабочие компоненты. Такой подход позволяет максимально точно определить момент подачи искры, благодаря чему смесь разжигается своевременно. Это позволяет получить больше мощности, улучшить продувку цилиндра и снизить вредные выбросы, благодаря лучшему дожигу топлива.

Схема электронной системы

Электронная система зажигания автомобиля отличается высокой стабильностью работы и устанавливается на большинство современных авто. Такая популярность определена преимуществами данной схемы:

  • Снижение расхода топлива во всех режимах работы мотора.
  • Улучшение динамических показателей – отклик на педаль газа, скорость разгона и т.д.
  • Более плавная работа мотора.
  • Выравнивается график момента и лошадиных сил.
  • Минимизируются потери мощности на низких оборотах.
  • Совместима с газобаллонным оборудованием.
  • Программируемый электронный блок позволяет настроить двигатель на экономию топлива или наоборот, на повышение динамических показателей.

Назначение системы зажигания достаточно простое, она является неотъемлемой частью бензинового двигателя, а также моторов, оснащенных ГБО. Этот компонент постоянно меняется и приобретает новые формы, соответствующие современным требованиям. Несмотря на это даже самые простые модели зажигания все еще используются на различной технике, успешно выполняя свою работу, как и десятки лет назад.

Как работает система зажигания автомобиля?

Как работает система зажигания автомобиля?

Система зажигания автомобиля является одной из наиболее важных систем, используемых в двигателях ВС. Для двигателя внутреннего сгорания требуется специальное устройство для зажигания сжатой воздушно-топливной смеси. Воспламенение происходит внутри цилиндра в конце такта сжатия. Система зажигания служит этой цели. Это дает искру, чтобы зажечь топливовоздушную смесь в нужное время.

Цель этой системы заключается в создании очень высокого вольтажа батареи, и его направления в каждую свечу зажигания, воспламенения топливной смеси в двигательной камере сгорания.

Из чего состоит система зажигания?

1- Катушка

Она представляет собой компонент, который производит напряжение. Это электромагнитное устройство, которое преобразует ток низкого напряжения от аккумулятора в ток высокого напряжения каждый раз, когда размыкаются контакты выключателя распределителя.

2- Распределительный блок

Он состоит из металлической чаши, содержащей центральный вал, который приводится в движение распределительным валом или, иногда, коленчатым валом. В чаше находятся точки размыкания контактов, рычаг ротора и устройство для изменения момента зажигания.

Как распределяется ток?

  1. Крышка распределителя выполнена из непроводящего пластика, и ток подается на центральный электрод с помощью ВТ-провода от центра катушки.
  2. Внутри колпачка находится несколько электродов, часто называемых сегментами, к которым подключены провода свечей зажигания, по одному на цилиндр.
  3. Роторный рычаг установлен сверху центрального вала и соединяется с центральным электродом с помощью металлической пружины или подпружиненной щетки в верхней части крышки распределителя.
  4. Ток поступает в колпачок через центральный электрод, проходит в центр рычага ротора через щетку и распределяется по каждой пробке при вращении рычага ротора.
  5. Далее когда плечо ротора приближается к нужному сегменту, размыкатель контакта размыкается, и ток проходит через плечо ротора к соответствующему проводу свечи зажигания.
  6. Внутри распределителя установлены точки размыкания контактов. Они действуют как выключатель, синхронно с двигателем, который отключает и повторно подключает 12-вольтовую цепь низкого напряжения к катушке.
  7. Эти точки открываются кулачками на центральном валу и снова закрываются пружинным рычагом на подвижном контакте. При закрытых точках ток течет от батареи к первичным обмоткам катушки, а затем к земле.

Примечание: когда точки открыты, магнитное поле в первичной обмотке разрушается, и во вторичной обмотке индуцируется ток высокого напряжения. Этот ток передается на свечи зажигания через крышку распределителя.

  1. Положение точек и корпуса распределителя относительно центрального вала можно регулировать вручную. Это изменяет синхронизацию искры, чтобы получить точную настройку.
  2. Дальнейшие изменения происходят автоматически, поскольку частота вращения двигателя изменяется в зависимости от открытия дроссельной заслонки.
  3. Ток проходит от каждого сегмента на колпачке распределителя вниз, к штепсельной вилке ведет к колпачкам штепсельной вилки, а затем идет вниз по центральному электроду, который изолирован по всей своей длине, к носику пробки.

Примечание: в некоторых современных системах зажигания микроэлектроника обеспечивает оптимальную синхронизацию зажигания для всех скоростей и условий нагрузки двигателя.

При этом некоторые системы зажигания используют транзисторы для снижения нагрузки на точки контакта распределителя. Другие используют комбинацию транзисторов и магнитного датчика в распределителе.

Типы системы зажигания

В современных автомобилях используются три типа систем зажигания:

  1. Система зажигания батареи (или система зажигания катушки).
  2. Система магнитного зажигания.
  3. Система зажигания аккумулятора.

Обе этих системы основаны на принципе общей электромагнитной индукции.

Система зажигания аккумулятора используется в основном в легковых автомобилях и небольших грузовиках. В системе зажигания аккумулятора ток в первичной обмотке подается от аккумулятора. В магнитной системе зажигания, которая производит и подает ток в первичной обмотке.

Примечание: искрение должно происходить в правильное время в конце такта сжатия в каждом цикле работы. К тому же система зажигания должна эффективно функционировать на высоких и низких оборотах двигателя. Она должна быть простой в обслуживании, легкой и компактной.

Система зажигания аккумулятора

Напряжение аккумулятора зависит от количества витков в каждой катушке. Это вызывает высокоинтенсивную искру, которая перепрыгивает через промежуток. Тем самым воспламенение топливовоздушной смеси происходит во всех цилиндрах. Система зажигания аккумуляторов широко используется в автомобилях, легких грузовиках, автобусах и т. д.

Система магнитного зажигания

Такая система состоит из вращающихся магнитов в неподвижных катушках или вращающихся катушек в неподвижных магнитах. Ток, создаваемый магнитом, протекает к индукционной катушке, которая работает так же, как и в системе зажигания аккумулятора. При этом батарея не требуется, поскольку магнит сам действует как генератор.

Этот тип системы зажигания используется в небольших двигателях с искровым зажиганием, например для мотороллеров, мотоциклов и небольших моторных лодок.

Электромеханическая система зажигания

Стандартная электромеханическая система зажигания использует механические контактные прерыватели и поэтому имеет множество недостатков:

  1. Часто точки замыкания контактов не выдерживают сильный ток — это приводит к выгоранию контактных точек. Таким образом, требуется периодическое обслуживание и настройки.
  2. Механическое управление контактным выключателем имеет инерционный эффект. Следовательно, на высоких скоростях замыкание или размыкание контакта может не произойти.
  3. На высоких скоростях не хватает времени для нарастания тока в катушке до своего максимального значения.

Для преодоления вышеуказанных недостатков в автомобилях используются электронные системы зажигания. Они обладают лучшими характеристиками при любых условиях и скоростью, в отличие от электромеханических систем.Система электронного зажигания состоит из транзисторов, конденсаторов, диодов и резисторов. Она действует как сверхмощный переключатель в управлении первичным током для катушки зажигания высокого напряжения.

История системы зажигания

Считается что первая система зажигания была создана в 1780 году, когда Алессандро Вольта собрал игрушечный электрический пистолет, который использовал электрическую искру для зажигания смеси водорода и воздуха, чтобы выстрелить пробкой.

И хотя Алессандро Вольта продемонстрировал, как может использоваться электрическая игра, необходимо было еще разработать два компонента, прежде чем разработать систему зажигания. Первым компонентом был магнит для генерации электрического тока (Фарадей впервые продемонстрировал, как движущееся магнитное поле может генерировать ток в 1831 году, но первая система магнитного зажигания появилась только в 1890-х годах).

Другим переломным моментом в истории системы зажигания стало изобретение свечи зажигания в 1860 году. Этот используемый в двигателях компонент с искровым зажиганием, был разработан бельгийским инженером Этьеном Ленуаром для своего бензинового двигателя.

На рубеже веков Рудольф Дизель разработал цикл Дизеля. В отличие от бензиновых двигателей, которые используют цикл Отто, дизельные двигатели используют сжатие вместо искры, чтобы воспламенить смесь воздуха и топлива. Это привело к разработке совершенно другого типа системы зажигания, которая использует свечи накаливания.

Следующее крупное событие в истории системы зажигания произошло в 1910 году, когда Cadillac представил двигатель, который использовал батарею и катушку зажигания. Эта система имела все те же основные части, которые использовались ранее, включая катушку с батарейным питанием, конденсатор, точки и распределитель. Как и в современных системах зажигания, катушка генерировала ток, необходимый для получения искры, точки выступали в качестве переключателя для запуска катушки, а распределитель посылал искру в соответствующий цилиндр в нужное время.

Примечание: современные системы используют электронное зажигание вместо механических устройств. Первая электронная система зажигания была разработана Delco-Remy в 1948 году, но тогда их было решено не ставить на автомобили. Популярность они начали набирать лишь в 1990-х годах, и теперь используются во всей автомобильной промышленности. Вместо распределителя для маршрутизации тока от одной катушки, в электронных системах зажигания используются управляемые компьютером блоки катушек, каждый из которых подключен к одной или двум свечам зажигания.

Источник http://auto-diary.ru/raznoe/kak-rabotaet-sistema-zazhiganiya-avtomobilya.html

Источник http://avtotop.info/kak-rabotaet-sistema-zazhiganija-avtomobilja/

Источник http://auto.vercity.ru/magazine/13763_kak_rabotaet_sistema_zazhiganiya_avtomobilya/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: