Электронная контактная система зажигание своими руками. Электронное зажигание для авто

Содержание

Электронное зажигание своими руками для автомобиля – Электросхема электронного зажигания своими руками. Простая схема электронного зажигания. Что дает установка БСЗ на семерку

В данной статье расскажем про электронное зажигание для автомобиля. Покажем схему электронного зажигания.

В 90-е годы у меня был автомобиль ВАЗ-2101, Фиатовской сборки, который мне достался от моего деда. Качество автомобиля было таким, что после перегрева двигателя с лопанием компрессионных колец и 90 километрового возвращения до дома, при капитальном ремонте этого двигателя даже не потребовалась расточка блока цилиндров. Поверхности цилиндров при 200 000 пробеге были идеальными. При расходе 7 литров на 100 километров пути, на трассе моей «копейке» не хватало пятой передачи. Один был существенный недостаток – канифолила мозги контактная система зажигания. Уж слишком часто нагорали контакты прерывателя. Покопавшись в радиолюбительской литературе я нашел то, чего моей «ласточке» не хватало – схему электронного зажигания. После установки этой схемы на автомобиль, расход уменьшился до 6,5 литров на 100 километров пути, а проблем с перебоями зажигания не стало. Я давно уже пересел на японца, а вот мой отец – фанат «классики» никогда от неё не отказывался. А сколько по стране ещё бегает Жигулёнков? Схему электронного зажигания, которую я собирал на свою «копейку», я давно уже потерял, но нашёл другую схему, которая почти не отличалась от моей. После некоторой доработки, я собрал для отца предлагаемую ниже схему и что замечательно, у него расход топлива тоже упал приблизительно на 0,5 литра.

Предлагаемая схема электронного зажигания предназначена для установки на автомобили только с контактной системой зажигания.

Схема, установленная к стандартной системе контактного зажигания, имеет следующие преимущества:

  • не обгорают контакты прерывателя;
  • предусмотрена схема защиты катушки зажигания от возможного сгорания в результате длительного включения зажигания без вращения двигателя;
  • искра формируется в колебательном режиме, другими словами формируется несколько коротких импульсов, что улучшает качество сгорания паров бензина в цилиндрах ДВС.

картинка-схема электронного зажигания

Рассмотрим работу схемы электронного зажигания:

график работы схемы электронного зажигания

При замыкании и размыкании контактов прерывателя SK импульс проходит через С1, кратковременно открывая VT1, VT2 и VT3. При закрывании VT3 возникает искра. С3 немного сглаживает пик импульса высокого напряжения появляющегося между коллектором и эмиттером VT3, защищая его от пробоя. Когда в результате самоиндукции катушки зажигания и заряда С3 напряжение между коллектором и эмиттером достигнет порядка 230 вольт, происходит первичный пробой диода VD3. В результате этого, ток снова пойдёт через первичную обмотку катушки. С3 обеспечивает кратковременную задержку закрывания диода VD3, позволяя насытиться катушке зажигания. Когда диод закрывается, возникает вторая искра, которая немного слабее первой. Процесс образования искры имеет затухающий характер, может повториться несколько раз, и зависит от напряжения пробоя диода VD3 и емкости конденсатора С3. Длительность каждого импульса искрообразования короче, чем один импульс стандартной системы зажигания, а общая длительность пачки импульсов зажигания больше. В результате этого происходит многократное воспламенение паров топлива, без уменьшения срока службы свечей зажигания. Топливо сгорает лучше, уменьшается нагар свечей, что в свою очередь снижает расход бензина.

В случае длительно замкнутых контактов прерывателя, конденсатор С1 постепенно заряжается через замкнутые контакты, ток через конденсатор убывает, соответственно и транзисторы плавно закрываются, защищая катушку зажигания от возможного перегрева.

Элементы схемы: Резисторы – любые, на мощность не ниже указанной на схеме. Их номиналы могут отличаться от указанных на схеме на 20%, схема будет работать надёжно. Электролитические конденсаторы любого типа, на напряжение не ниже указанного на схеме. Диод VD1 — любой маломощный импульсный. Диод VD2 – любой маломощный выпрямительный. Диод VD3 используется и как защитный диод в цепи коллектор-эмиттер транзистора VT3, и как стабилитрон. Обратное напряжение пробоя диода VD3 равное 200…250 вольтам определяет скорость и амплитуду повторных импульсов зажигания, поэтому в качестве VD3 применимы мощные импульсные диоды 2Д213А, 2Д213Б, 2Д231 с любым индексом, 2Д245Б, или два последовательно соединённых 2Д213В. Возможно подобрать диод и другого типа, но с не худшими параметрами и указанным обратным напряжением. Транзистор VT1 – типа КТ361Б,В,Г, или КТ3107 с любой буквой. Транзистор VT2 – типа КТ315Б,Г,Е,Н, или КТ3102 с любой буквой. Транзистор VT3 – типа 2Т812А (КТ812А), можно использовать КТ912А, или КТ926А.

Прошу обратить внимание, что плюсовой вывод катушки не отключается от общего плюса системы зажигания, как может показаться на схеме, а лишь питание схемы осуществляется от 12 вольт, имеющимися на катушке зажигания. Разрывается только цепь «прерыватель — катушка зажигания». Как это реализуется изображено на следующих рисунках. На первом изображена стандартная схема зажигания, на втором — подключение схемы электронного зажигания.

картинка-схема контактного зажигания

Для подключения схемы электронного зажигания необходимо разорвать чёрный провод идущий от прерывателя к катушке зажигания. Прерыватель подключить на вход схемы электронного зажигания, а вывод катушки — к коллектору транзистора. Конденсатор висящий на прерывателе можно оставить, а лучше выкинуть, он почти не влияет на работу схемы. Никакие другие цепи «стандартного» зажигания не разрывают и не переключают. Необходимо только запитать схему зажигания: минус — это корпус авто, а плюс взять от другого контакта катушки зажигания (на рисунке — сине-чёрный провод). Все изменения изображены на рисунке красным цветом.

картинка-схема подключения электронного зажигания

Вся схема собрана на маленькой плате размерами 3,5 х 5,0 см, помещённой в алюминиевый корпус размерами 4,0 х 6,5 х 2,5 см. Транзистор расположен непосредственно на корпусе через слюдяную прокладку. Важно обеспечить изоляцию коллектора транзистора от корпуса автомобиля (нуля). После сборки, для уменьшения расхода топлива, может понадобиться небольшая регулировка угла опережения зажигания.

Простая схема электронного зажигания – Схема-авто – поделки для авто своими руками

Автор admin На чтение 3 мин. Просмотров 18k. Опубликовано 29.01.2015

Общеизвестно, что воспламенение топлива в двигателях внутреннего сгорания происходит благодаря искре от свечи зажигания, напряжение которого может достигать 20 Кв (если свеча полностью исправна).

На некоторых двигателях, для полноценной его работы иногда необходима энергия значительно больше, чем могут дать 20 Кв. Для решения данной проблемы и создана специальная электронная система зажигания. В российских отечественных автомашинах применяются обычные системы зажигания. Но все они имеют очень большие минусы.

2

2

Когда авто стоит на холостом ходу, в прерывателе, а иемнно между контактами появляется дуговой разряд, который поглощает большую часть энергии. При достаточно больших оборотах вторичное напряжение на катушке уменьшается из-за дребезга этих контактов. В результате чего это приводит к плохой аккумуляции энергии для образования искры зажигания. Из-за чего значительно снижается КПД двигателя автомобиля, увеличивается объем CO2 в выхлопной системе, топливо практически полностью не расходуется, автомашина прожирает топливо просто так.

Большим минусом старых систем зажигания является быстрота износа контактов прерывателя. Обратной же стороной этой медали является то, что эти системы с многоискровой механической распределителем, его называют также «Трамблер»ом, простота, которая обеспечивается 2-ной функцией механизма распределителя.

Для того чтобы повысить вторичное напряжение, которое генерируется такой системой, можно воспользовавшись приборами, на основе полупроводников, которые будут работать в качестве ключей управления. Именно они будут прерывать ток в первичной обмотке катушки. В качестве таких ключей сегодня используются транзисторы, которые генерируют токи до десяти Ампер без всяких повреждений и искр. Существуют экземпляры, построенные на базе тиристоров, но из-за своей нестабильности широкого применения они не нашли.

Processed by: Helicon Filter;

Processed by: Helicon Filter;

Одним из вариантов модернизации БСЗ – переделка в контактно-транзисторную систему зажигания (КТСЗ).

4

4

На схеме проиллюстрировано устройство КТСЗ.

Данное устройство генерирует искру с достаточно большой длительностью. И благодаря чему сгорание топлива становится оптимальным. По схеме можно разобрать, что система построена на основе так называемого триггера Шмитта. Собран он из транзисторов V1 и V2, усилителя V3, V4 и ключа V5. Здесь ключ выполняет роль коммутатора тока на обмотке катушки.

5

5

Триггер предназначен для генерации импульсов с достаточно широким спадом и фронтов при замыкании контактов в прерывателе. В результате чего на первичной обмотке увеличивается быстрота прерывания тока, что в свою очередь намного увеличивает амплитуду напряжения на вторичной обмотке.

Простая схема электронного зажигания

Простая схема электронного зажигания

Это увеличивает шансы для возникновения более мощной искры, которая способствует улучшению запуска мотора и полному результативному расходу топлива.

В сборке были использованы:
• Транзисторы VI, V2, V3 – KT312B, V4 – KT608, V5 — KT809A, C4106.
• Конденсатор – С2 (от 400 Вольт)
• Катушка B115.

Электронное зажигание для авто – Поделки для авто

Улучшение технических параметров автомобиля, является одной из приоритетных задач процесса модернизации для каждого водителя, в частности: снизить расход топлива; увеличить мощность двигателя; создание резервного источника энергии для запуска двигателя в зимнее время. Большинство национальных автомобилей работают на карбюраторных двигателях.

Для запуска двигателя, необходимо чтобы горючая смесь воспламенилась не только во время запуска карбюраторного двигателя в камере сгорания, но также во время работы. Воспламенение смеси во время работы осуществляется посредствам электронных свечей, которые, в свою очередь, ввёрнуты в головку цилиндра и в которых воспламените смеси происходит за счёт создания электрического разряда определённой мощи, достаточной для выделения необходимого количества электрической энергии.

Во время образования искры между электродами, необходимо чтобы уровень напряжение составлял не менее 20кВ. Если двигатель автомобиля прогрет, во время искрообразования специализированная рабочая смесь обладает должными свойствами: иметь необходимый температурный уровень, а также сама смесь должна быть уже сжата, это позволит создать самовоспламенение.

При данной ситуации, чтобы осуществить запуск двигателя, достаточно электрический заряд составил 5мДж энергии. Однако двигатель автомобиля не ограничивается лишь одним режимом функционирования, поэтому часто происходит ситуация, когда необходимо чтобы энергия свечи составляла примерно 100 мДж.

Практический пример: работа двигателя на бедной смеси, когда не до конца открыт ограничитель (дроссель) или функционирования двигателя на холостом ходу. На национальных автомобилях, которые уже давно используются в процессе эксплуатации, стоит классическая батарейная система зажигания, в которой существует множество разновидностей весьма существенных технических недостатков.

Снимок14

Если двигатель функционирует на холостых оборотах, то весьма заметный процент электрической энергии искры, поглощается между контактами прерывателя за счёт создания дугового разряда. Во время работы двигателя автомобиля на высоких оборотах, между контактами прерывателя возникают искристые дребезги, вследствие этого уменьшается вторичное натяжение катушки. Данный процесс происходи при смыкании контактов прерывателя.

Как результат, время смыкания контактов существенно снижается, как следствие, на катушки первичной отмотки накапливается электрическая энергия определённого уровня мощности, из-за чего может и не произойти воспламенения горячей смеси и двигатель автомобиля не будет приведён в рабочее состояние. При данной ситуации, катушка первичной обмотки выполняет роль энергетического аккумулятора.

Последствия данного процесса проявляются на глазах: мощность двигателя существенно снижается от стартовой; через выхлопную трубу начинает больше выделяться углекислого газа; топливо не до конца сгорает и выходит, расход бензина у автомобиля существенно возрастает.

Национальные автомобили длительного срока эксплуатации, имеют батарейную систему зажигания, детали в которой уже давно не пригодны из-за длительного срока их постоянной эксплуатации, вследствие этого изнашиваются сами контакты прерывателя, что в свою очередь влечёт за собой снижение работоспособности двигателя, а также существенно снижается количество успешных запусков двигателя.

Трамблер – многоискровый механический распределитель, который встроен в систему батареи, его главным техническим достоинством, является простота конструкции. Сам распределитель имеет двойную функцию работы: распределяет синхронно электрическое напряжение равномерно по всем цилиндрам двигателя и прерывает цепь постоянного тока для создания высокого электрического напряжения.

Применяя полупроводниковые приборы

– это позволяет повысить вторичное напряжение. Данные приборы представляют собой управляемые ключи, которые обеспечивают прерывание тока в катушке зажигания первичной обмотки. В качестве управляемых ключей, наибольшее широкое применения получили транзисторы высокой мощности, который способны генерировать ток силой до 10 ампер, без искрения или какого-либо механического повреждения во время индуктивной нагрузки.

Именно искрение и механическое повреждение являются главными недостатками использования прерывателей. Существует также возможность использования силовых тиристоров, однако, они не получили широкой промышленной реализации в системах каммуляции (накопления) электрической энергии, поскольку они не имели индуктивности.

Снимок15

Перестройка батарейной системы зажигания в контактно-транизиторную систему зажигания – это один из наиболее доступных и эффективных способов модернизации. Конденсаторно-транзисторное устройство зажигания изображено на представленном ниже рисунке.

Данное устройство позволяет повысить качество системы зажигания, за счёт формирования электрической искры большой длительности, таким образом, процесс сгорания приближается к оптимальному диапазону динамических изменений оборотов и нагрузки самого двигателя.

Триггер Шмитта представляет собой систему зажигания, которая в свою очередь состоит из: развязывающихся усилителей V3, V4; транзисторов V1 и V2; электронного ключа V5, сего помощью катушка зажигания первичной обмотки накапливает электрический ток.

Снимок17Снимок19

Благодаря триггеру Шмитта можно коммутирующие импульсы, как с крутым фронтом, так и со спадом во время размыкания или смыкания контактов прерывателя. Вследствие этого возрастает скорость изменения и амплитуды высоковольтного напряжения при выходе из вторичной обмотки катушки зажигания, данное явление происходит благодаря возрастанию скорости прерывания тока на катушке зажигания первичной обмотки.

Снимок20

Что в свою очередь позволяет существенным образом улучшить условия для возникновения электрической искры в свече зажигания. Описанная выше система зажигания предоставляет высокие энергетические характеристики электрической искры, что приводит к более полному сгоранию бензина, а также повышению эффективности запуска двигателя автомобиля.

Снимок21

Устройство электронного зажигания содержит транзисторы VI, V2, V3 – КТ312В, V4 – КТ608, V5 — КТ809А, однако, можно применить транзистор C4106Ю, который собственно изображен на фото выше. С2 конденсатор должен обладать напряжением не менее 400 В. Используется стандартная катушка зажигания в легковых автомобилях – Б 115.

Похожие статьи:

Блок электронного зажигания

В. Беспалов, «Радио», №1, 1987
Модификация: Алексей Кузнецов
E-mail: RA3TSL (at) mail.ru
(замените (at) на @)

Для экономии бензина и уменьшения вредных продуктов сгорания в последнее время наметилась тенденция обеднять горючую смесь в двигателях автомобилей. Для надежного воспламенения обедненной смеси требуется мощный и длительный искровой разряд. Установлено, что такой разряд, кроме этого, допускает больший разброс угла опережения зажигания, уменьшает детонацию, улучшает пуск и повышает устойчивость работы двигателя на любых режимах. Формирование запальных искровых разрядов в последние годы все чаще доверяют электронным системам зажигания, преимущества которых широко известны.

Описываемый ниже блок объединяет в себе свойства транзисторной и тринисторной систем зажигания. От первой он отличается тем, что в нем использован закрытый (при замкнутых контактах прерывателя) транзисторный ключ, коммутирующий цепь первичной обмотки катушки зажигания, а от второй — тем, что накопительный конденсатор заряжается от ЭДС самоиндукции этой же обмотки, когда транзисторный ключ прерывает ток через нее [1].

От известных систем зажигания с импульсным накоплением энергии на конденсаторе [2] и от комбинированных систем [3, 4] она отличается отсутствием специального многообмоточного накопительного трансформатора. Система обеспечивает искровой разряд более высокой длительности и энергии. По этим параметрам она превосходит известные системы зажигания. Так, по длительности разряда устройство в 8… 10 раз превосходит тринисторно-конденсаторные системы с непрерывным и импульсным накоплением энергии. При неработающем двигателе она потребляет незначительный ток, имеет высоную скорость нарастания высоковольтного импульса и при всех значениях частоты вращения коленчатого вала двигателя формирует на один запускающий импульс мощный двойной искровой разряд. Система защищена от дребезга контактов прерывателя и от помех бортовой сети автомобиля.

Недостатком системы зажигания является обязательность использования в ней катушки зажигания с малой индуктивностью первичной обмотки и высоким коэффициентом трансформации (около 300). Удовлетворительно работает система с катушкой Б114 (коэффициент трансформации 227). Но для полной реализации возможностей системы катушку надо несколько переделать, чтобы довести коэффициент трансформации до 280. После переделки можно использовать и широко распространенные катушки Б115, Б117 О самой переделке рассказано в конце статьи.

Основные технические характеристики

Напряжение питания. В6…17
Потребляемый ток, А. при неработающем двигателе и замкнутых контактах прерывателя0,15
разомкнутых контактах прерывателя0.015
частоте искрообразования 100 Гц3.3
максимальной частоте искр образования (200 Гц)4.5
Энергия искры, мДж, при напряжении питания 14 В, частоте искрообразования 100 Гц и длине искрового промежутка 7 мм170
Длительность искрового разряда при тех же. условиях, мс4.8
Скорость нарастания высоковольтного импульса, В/мкс, при длине искрового промежутка 7 мм350
15 мм500

Принципиальная схема блока зажигания показана выше. Устройство состоит нз узла запуска, собранного на транзисторе VТ1, формирователя запускающих импульсов на транзисторах VT2 и VТЗ, транзисторного ключа VТ4, тринисторного ключа VS1 и накопительного конденсатора С5.

Временные диаграммы (мгновенное значение) поясняют работу системы зажигания при частоте искрообразования 50 Гц, угле замкнутого состояния контактов прерывателя 55°, напряжении питания 14 В и длине искрового промежутка 7 мм. Диаграммы А, Б, В, Е, И сняты относительно общего провода, Г (показана в увеличенном масштабе времени) и Ж — относительно катода тринистора VS1; Д снята в разрыве цепи коллектора транзистора VT4; И — диаграмма напряжения на вторичной обмотке, снята с делителя напряжения, составленного из резисторов 10 МОм и 1кОм; для снятия диаграммы К — тока вторичной обмотки катушки зажигания — последовательно с искровым промежутком, со стороны общего провода, включали резистор сопротивлением 10 Ом, с которого сигнал подавали на осциллограф.

Предположим, что в исходном состоянии контакты прерывателя замкнуты, тогда конденсатор С1 узла запуска разряжен и транзистор VT1 закрыт. Транзистор VT2 открывается током, протекающим через резисторы R5—R7, a VT3 будет закрыт, так как напряжение на его базе будет близко к нулю. Формирующий конденсатор С2 через резисторы R10, R9, R7 и эмиттерный переход транзистора VT2 заряжен до напряжения около 5,3 В. Так как транзистор VT3 закрыт, то транзистор VT4 будет также закрыт. Ток через первичную обмотку катушки зажигания Т2 от бортовой сети автомобиля не протекает и накопительный конденсатор С5 разряжен.

При первом размыкании контактов прерывателя через цепь R1VD1 заряжается конденсатор С1 и открывается транзистор VT1. Напряжение конденсатора С2 оказывается приложенным через открытый транзистор VT1 с закрывающей полярности к эмиттерному переходу транзистора VT2 и поэтому он закрывается, а сам конденсатор начинает перезаряжаться от источника питания через резисторы R5 и R6. Пока разряжается конденсатор С2, транзисторы VT3— VT4 открыты. Время разрядки конденсатора С2 можно регулировать резистором R5. Через первичную обмотку катушки зажигания начинает протекать ток, и в ней накапливается электромагнитная энергия. Параметры этой обмотки должны быть такими, чтобы процесс накопления энергии закончился через 2…2.5 мс. Примерно такое же время необходимо, чтобы напряжение на конденсаторе С2 успело уменьшиться до напряжения, при котором открывается транзистор VT2. Из-за большого статического коэффициента передачи тока транзисторов VT2—VT4 транзисторный ключ VT4 в момент открывания транзистора VT2 резко закрывается, что приводит к прерыванию тока в первичной обмотке катушки зажигания. Во вторичной обмотке катушки зажигания через 2…2,5 мс возникает высоковольтный импульс, вызывающий искру в запальной свече. После уменьшения его напряжения до 1,2 кВ искровой разряд поддерживается некоторое время, которое зависит от параметров катушки зажигания и искрового промежутка.

В момент закрывания ключа VT4 возникает большая ЭДС самоиндукции в первичной обмотке Импульсом этой ЭДС через диоды VD6 и VD4 накопительный конденсатор С5 заряжается до напряжения примерно 105 В даже при замкнутой вторичной обмотке катушки зажигания.

После замыкания контактов прерывателя из-за разрядки конденсатора С1 через базовую цепь транзистора VT1 обеспечивается временная задержка (около 0.5 мс) закрывания этого транзистора, что защищает систему от дребезга контактов п р рывателя. Как только транзистор VT1 закроется, вновь заряжается формирующий конденсатор С2.

При втором и последующих размыканиях контактов прерывателя снова открываются транзисторы VT1, VT3 — VT4. Перепад напряжения, который формируют транзисторы VT2, VT3. открывает транзистор VT4. Во вторичной обмотке трансформатора T1 возникает импульс, который открывает тринистор VS1. Ранее заряженный накопительный конденсатор С5 разряжается через транзистор VT4, источник питания, первичную обмотку катушки зажигания и тринистор VS1. Во время разрядки накопительного конденсатора диод VD6 закрывается. Пропускание разрядного тока конденсатора по первичной обмотке катушки зажигания вызывает пробой искрового промежутка в свече зажигания, но теперь уже в момент размыкания контактов прерывателя.

После того, как разрядный ток накопительного конденсатора значительно уменьшится, триннстор VS1 закроется, через первичную обмотку катушки зажигания, открывшийся диод VD6, транзистор VT4 от бортовой сети потечет тек. Этот ток некоторое время поддерживает возникший искровой разряд. Одновременно с ним происходит накопление энергии в первичной обмотке катушки зажигания.

Когда через 2…2,5 мс будет прерван ток в первичной обмотке катушки зажигания, накопленная в ней энергия преобразуется в положительный импульс для повторного пробоя искрового промежутка и разряд поддерживается еще некоторое время. Одновременно после закрывания транзисторного ключа вновь заряжается накопительный конденсатор. Таким образом, длительность всего искрового разряда достигает 4,8 мс.

С повышением частоты искрообразования из-за уменьшения времени, отводимого на зарядку формирующего конденсатора С2, время, в течение которого открыт транзисторный ключ УТ5, уменьшается (при частоте более 120 Гц — до 1,7.-2 мс), что приводит к уменьшению длительности и энергии искрового разряда.

Защиту блока зажигания от помех со стороны бортовой сети автомобиля обеспечивают цепи VD7C6, СЗС4 и резистор R7. Кроме этого, во время формирования запускающих импульсов цепь обратной связи через резистор R4 удерживает транзистор VT1 открытым, что увеличивает помехозащищенность и четкость работы системы в момент размыкания контактов прерывателя.

Чертеж печатной платы, которая изготовлена из фольгированного стеклотекстолита толщиной 2 мм, показан на рисунке. Диод VD6 для улучшения его охлаждения установлен на дюралюминиевом уголке и изолирован слюдяной прокладкой. Соединительные проводники между коллектором транзистора VT4, диодом VD6 и зажимом 2 блока должны иметь минимальную длику и сечение не менее 0,75 мм 2 .

Разделительный трансформатор Т1 наматывают на кольцевом магнито проводе типоразмера К12Х6Х4 из феррита с магнитной проницаемостью 1000—2000. Можно применить магнитопровод другого типоразмера, например, K12X5X5,5 или из двух колец K10Х Х6Х4.5. Обмотки содержат по 70 витков провода ПЭЛШО 0,15. Наматывают их одновременно двумя проводами.

Конденсаторы С1, СЗ, С4 — К10-7В или КЛС; С2 — К73П-3; С5 — МБГО; Сб — К50-3, его можно заменить малогабаритным К52-2 емкостью 15 мкФ на номинальное напряжение 70 В. Диод КД202Р можно заменить на КД202М, КД202К, Д245А — на Д231А, Д232, Д246А; тринистор КУ202Н — на КУ202Л, КУ202И; стабилитрон КС168А — на КС168В, КС162А, КС156А; КС630А — на 2С930А. Транзисторы КТ315И можно заменить на КТ315В. КТ315Г, КТ503 с любым буквенным индексом; КТ608Б — на КТ608А, КТ815Б — КТ815Г; КТ805АМ — на КТ805БМ; 1Т813В — на 1Т813Б, 1Т806В, ГТ806В.

Рекомендуется к прочтению  Подсветка замка зажигания, делаем своими руками. Установка подсветки в замок зажигания Свертки замка зажигания своими руками

Общий вид блока (со снятой крышкой) и размещение деталей в нем показаны на рисунке.

Переделка катушки зажигания

Для переделки катушки зажигания Б114 ее разбирают. Перед разборкой, чтобы было легче развальцевать металлический стакан, снимают напильником фаску по его краю. После этого, осторожно, чтобы не повредить пластмассовую крышку, развальцовывают край металлического стакана, вынимают катушку и резиновое уплотнительное кольцо. С первичной обмотки, расположенной поверх вторичной, сматывают верхний слой (35 витков). Оставшиеся витки необходимо надежно укрепить петлей из тесьмы. Поверх обмотки следует уложить 2—3 слоя бумаги и обмотать сверху нитками.

Для обеспечения оптимальной индуктивности рассеяния сечение стержневого магнитопровода катушки зажигания надо уменьшить в 2,5 раза (оставить 10 пластин). Эти пластины обертывают несколькими слоями бумаги и плотно вставляют в катушку.
Затем катушку зажигания собирают, при необходимости в стакан добавляют трансформаторного масла и снова завальцовывают. Перед завальцовкой крышку катушки следует прижать, например, струбциной.

У катушек зажигания Б117, Б115 надо также оставить 10 пластин, а первичную обмотку следует удалить и намотать другую проводом ПЭВ-2 диаметром 1,2 мм. Число витков — 100; их укладывают в три слоя. Обмотку следует надежно закрепить; расстояние по поверхности изоляции между ее крайними витками и магнитопроводом не должно быть менее 15 мм.

Перед налаживанием блока особое внимание следует уделить проверке цепи управления тринистором и подключению источника питания. Полярность подключения первичной обмотки катушки зажигания Б114 особой роли не играет. Однако, если катушку зажимом «К» подключить к плюсовому выводу источника питания, то запас по пробивному напряжению будет выше на 10… 15 % и произойдет изменение полярности высоковольтных импульсов. У катушек Б117, Б115 общую точку соединения обмоток рекомендуется подключать к плюсовому проводу питания. С такими катушками общая длительность искрового разряда уменьшается до 3,4…3,7 мс, а скорость нарастания высоковольтного импульса увеличивается до 600 В/мкс.

Для налаживания блока зажигания требуется регулируемый источник питания с напряжением до 15 В на ток нагрузки не менее 2 А. Выходные зажимы источника питания следует зашунтировать батареей конденсаторов с общей емкостью не менее 15 000 мкФ. Налаживают устройство при напряжении питания 14 В. Испытательный искровой промежуток в цепи вторичной обмотки катушки зажигания должен быть равен 7…8 мм. Вместо прерывателя подключают микропереключатель. Параллельно накопительному конденсатору С5 включают вольтметр постоянного тока на напряжение не менее 120 В и с током полного отклонения стрелки не более 100 мкА.

После включения питания микропереключателем подают одиночные запускающие импульсы. В искровом промежутке должна проскакивать мощная искра. При этом напряжение на накопительном конденсаторе С5 должно быть в пределах 100…105 В, его устанавливают подстроенным резистором R5. Если напряжение превышает 110 В и его не удается уменьшить, то следует проверить подключение обмоток трансформатора Т1 По окончании налаживания печатную плату и внутреннюю поверхность корпуса блока рекомендуется покрыть лаком.

Блок зажигания устанавливают на автомобиле в двигательном отсеке. Конденсатор, установленный на корпусе прерывателя, следует отключить. Проводники, соединяющие блок с бортовой сетью автомобиля, должны иметь сечение не менее 1,5 мм и минимальную длину.

Для более полной передачи энергии на свечи зажигания при большой частоте вращения коленчатого вала двигателя (свыше 3000 мин -1 ) рекомендуется доработать пластину ротора (бегунка) распределителя зажигания [5].

В. БЕСПАЛОВ, г. Кемерово

ЛИТЕРАТУРА
  1. Беспалов В. Е. Авторское свидетельство СССР № 977846 Бюллетень «Открытия, изобретения…*, 1982. № 44, с. 155.
  2. Синельников А. X. Электронные приборы для автомобилей.— М.: Энергоиз-дат. 1981; с. 16—34, 41—46.
  3. Everdlnq H. Elektronlsches Zundsystem reduziert schadiiche Abgase.— Elektronik. 1976. № 1, s. 61—64.
  4. Штырлов А., Вавннов В. Комбинированная электронная система зажигания.— Радио, 1983, № 7, с. 30—32.
  5. Синельников А. X. Электроника в автомобиле.— М.: Радист и связь, 1985; с. 32.

Усовершенствованная электронная система зажигания автомобиля.

В последние годы электронные приборы находят все большее применение в автомобильном транспорте, в том числе и приборы электронного зажигания. Прогресс автомобильных карбюраторных двигателей неразрывно связан с их дальнейшим совершенствованием. Кроме того, сейчас к приборам зажигания предъявляются новые требования, направленные на радикальное повышение надежности, обеспечение топливной экономичности и экологической чистоты двигателя.

Существуют две системы устройств электронного зажигания — транзисторные и тринисторные. Сравнивая их между собой, можно отметить характерные преимущества и недостатки.

Транзисторные устройства проще и дешевле, обеспечивают большую длительность искрового разряда в свечах, достигающую 2.Б…З мс. Однако при сравнительно небольшой скорости нарастания высоковольтного напряжения на свечах эффективность работы их значительно падает от появления шунтирующих нагрузок, которые обусловлены дополнительными утечками тока, вызванными загрязнением электропроводки, самого распределителя, работающего под высоким напряжением, изоляторов свечей и нагара в них, а со временем и старения изолирующих деталей системы зажигания. Кроме того, транзисторные устройства требуют применения специальной катушки зажигания.

Тринисторные устройства несколько сложнее и позволяют получить высокую скорость нарастания высоковольтного напряжения на свечах, практически не критичны к шунтирующим нагрузкам. Ток утечки не влияет существенно на качество искрового разряда при крутом фронте его нарастания. Но, имея малую длительность искры, в лучших конструкциях — до 0,6 мс, тринисторные устройства также не обеспечивают эффективной работы двигателя в свете новых требований.

Тринисторная система зажигания принципиально отличается от транзисторной тем, что в ней энергия накапливается не в катушке зажигания, а в накопительном конденсаторе. Такой принцип действия позволяет в наибольшей степени устранить недостатки, присущие как классической контактной, так и транзисторной системам. Поэтому тринисторная система была взята за основу с целью доработки ее таким образом, чтобы увеличить длительность искрового разряда и свече до 1,1…1,3 мс, так как типичная для таких систем длительность 0,25 мс явно недостаточна для стабильной работы двигателя на разных режимах, полного сгорания топливной смеси и особенно для надежного пуска двигателя в зимнее время.

Как было установлено автором, на автомобиле ЗАЗ для надежного пуска двигателя в зимнее время длительность искрового разряда должна быть как минимум 0,8 мс с экспериментально измеренной амплитудой напряжения 1 В на сопротивлении 14 Ом в цепи свечи при минимальном напряжении бортовой сети 5…6 В, что обусловлено работой стартера. Эти условия были исходными для разработки усовершенствованного блока. Известно, что выпускаемые промышленностью тринистор-ные электронные устройства, имеющие длительность искрового разряда 0,25…0,6 мс, обеспечивают стабильную работу устройства при снижении напряжения питания до 8 В, что явно недостаточно для надежного пуска двигателя в зимнее время.

Технически задача была сформулирована следующим образом: при пуске двигателя необходимо подавать довольно мощную серию импульсов длительностью не менее 0,8 мс во время нахождения поршня цилиндра в верхней мертвой точке. Следовало также попытаться использовать этот принцип и для основного режима работы двигателя.

В результате разработки был создан блок тринисторного зажигания (БТЗ) со следующими параметрами:

Напряжение питания, В 12±50 %

Начальный потребляемый ток, А ….. 0,55

Максимальный потребляемый ток, А . . . . 2,2…2,5

Максимальная частота вращения 4-цилиндрового двигателя, об/мин 5000

Начальная амплитуда 1-го разрядного импульса на сопротивлении 14 Ом, В 3±0,2

Длительность искрового разряда в свече, мс . 1,1…1,3

Напряжение на накопительном конденсаторе, В 400

Нестабильность напряжения на накопительном
конденсаторе при минимальной и максимальной частоте вращения, %. 10

Рабочая частота генератора, Гц ….. 800

Принципиальная электрическая схема БТЗ приведена на рис. 1. Во многом она повторяет известные разработки, поэтому ниже приведено описание работы отличающихся узлов. Подключение БТЗ к системам зажигания автомобилей приведено на рис. 2, 3.

Основным отличием БТЗ является введение обратной связи на управляющий электрод тринистора VS1 через цепочку C5R7R8VD12, в результате чего за один цикл работы БТЗ на управляющий электрод подается не только импульс по цепи запуска от контактного прерывателя, как раньше, а пакет из 4…5 импульсов (рис.4). В итоге после размыкания контактов прерывателя тринистор дополнительно открывается соответственное число раз, обеспечивая тем самым более полную разрядку накопительного конденсатора С4 на первичную обмотку катушки зажигания, т. е. более полное использование запасенной энергии на создание разряда в искровом промежутке.

Дополнительная серия искровых разрядных импульсов в свече после первых двух (импульсы 3… на рис 5) образуется за счет накопленной от разрядки конденсатора С4 электромагнитной энергии в катушке зажигания при пробое искрового промежутка свечи и трансформации этой энергии в первичную обмотку с подзарядкой накопительного конденсатора. Эти же импульсы воздействуя с уменьшающейся амплитудой через цепочку C5R7R8VD12 на управляющий электрод тринистора VS1, заставляют его открываться через каждые 150…200 мкс, что обеспечивает повторную разрядку накопительного конденсатора С4 на первичную обмотку. Так продолжается до тех пор, пока не израсходуется вся энергия, запасенная в катушке зажигания от первого разрядного импульса. Таким образом, добавлением цепочки C5R7R8 с диодом VD12 удалось увеличить длительность искрового разряда в свече до 1,3 мс. В известных разработках тринисторных систем обеспечено лишь частичное использование энергии, запасенной емкостным накопителем. Искровой разряд БТЗ имеет колебательный затухающий характер с изменением полярности полуволн. Такой характер разрядного процесса положительно влияет на увеличение срока службы свечей, так как происходит равномерное выгорание металла как центрального, так и бокового электродов в искровом промежутке.

Многократное искрообразование в течение одного цикла создает дополнительную нагрузку на преобразователь постоянного тока и увеличивает время запуска автогенератора после срыва колебаний при включении тринистора. При испытании модернизированного заводского блока зажигания (типа Электроника) напряжение на накопительном конденсаторе снижалось с 400 до 80 В на большой частоте вращения коленчатого вала двигателя. Такое устройство не могло нормально работать. С целью устранения этого недостатка был изготовлен более мощный преобразователь с удвоением выходного напряжения. Это схемное решение, являясь второй отличительной чертой усовершенствованного блока зажигания, привело к уменьшению времени пуска автогенератора с 1 до 0,25 мс, так как обеспечивалась более мягкая связь между тринисторным коммутатором и автогенератором. При неизменном напряжении питания устройство позволяет обеспечивать на минимальной и максимальной частоте вращения коленчатого вала двигателя довольно постоянное напряжение на накопительном конденсаторе С4, колеблющееся в пределах лишь 8…10%. Напряжение на накопительном конденсаторе выбрано таким же, как и у заводского блока — 400 В при номинальном напряжении питания.

Элементы R5 и СЗ в цепи высокого напряжения +400 В служат для сглаживания и стабилизации высокого напряжения на выходе выпрямителей, а также для уменьшения времени запуска автогенератора.

В связи с уменьшением количества витков вторичной обмотки трансформатора Т1 в два раза увеличилась его надежность, так как напряжение на вторичной обмотке уменьшилось с 400 до 200 В.

Усовершенствованный таким образом блок обеспечивает значительное улучшение пуска двигателя в зимнее время, надежную работу на скоростях до 90… 100 км/ч. На автомобиле ЗАЗ-968 был неоднократно проверен расход бензина на 100 км пробега. Экономия составила 7,2 %. Наряду с установкой БТЗ был также увеличен зазор в свечах до 1,5 мм, а положение регулятора качества смеси для ее обеднения было изменено с 1,5…2,0 оборотов (720°) до 180…2000 от своего начального полностью закрученного положения.

Выясняя причины плохого пуска двигателя в зимнее время, было обнаружено следующее: при падении напряжения в бортсети автомобиля до 5…6 В во время работы стартера БТЗ, как и другие блоки зажигания, не обеспечивал стабильной подачи искры в цилиндры. Причиной тому оказалось следующее: при таком значительном снижении напряжения питания амплитуда управляющих импульсов, которые поступают в т.А при размыкании контактов прерывателя (рис. 1), оказывается недостаточной для надежного запуска тринистора VS1, становясь соизмеримой с уровнем помех от работающего стартера и транзисторного автогенератора. Это вызывает пропуски искрообразования. Используемый фильтр L1C7 выполняет две функции. Основная из них: после размыкания прерывателя в обмотке дросселя L1 за счет накопленной магнитной энергии возникают затухающие колебания из-за переходного процесса, по принципу равносильного тому, как это происходит в классической батарейной системе зажигания. Амплитуда этих колебаний в зависимости от индуктивности дросселя L1 может достигать нескольких десятков вольт. Положительные полуволны колебаний длительностью до 10… 15 мкс через диод VD11 накладываются на передние фронты основных импульсов и обеспечивают надежный запуск тринистора VS1 (в описываемом устройстве их амплитуда составляла 7…9 В).

Второе назначение фильтра L1C7 — уменьшение влияния помех от работы стартера и транзисторного автогенератора на пусковую цепь тринистора.

Конструктивно БТЗ может быть выполнен в двух модификациях: в виде объемного модуля с расположением деталей на платах с монтажными лепестками или изготовлением общей печатной платы блока, одновременно являющейся и несущей конструкцией. По мнению автора, для индивидуального изготовления проще первый вариант, так как платы с монтажными лепестками могут быть использованы от старых, отслуживших свой срок радиоприборов. В качестве разъема для подключения БТЗ к бортсети автомобиля подойдут панельки и цоколи от старых радиоламп. Переход от электронного зажигания на обычное (контактное) производится простой перестановкой разъема — цоколя из одной панельки в другую (см. рис. 1). В БТЗ использованы резисторы типа МЛТ, кроме проволочных R1 и R4, которые намотаны на каркасах резисторов типа ВС-0,5. В качестве накопительного конденсатора С4 использованы два конденсатора МБГ на 1 мкФ, 500 В.

Выпрямительный сдвоенный диодный блок КЦ-403Б может быть заменен диодами, например МД218, но это несколько увеличит размеры устройства из-за монтажа восьми диодов. В таком случае лучше использовать диоды КД105В.

Конденсатор С5 должен быть высокого качества, герметизированным, рассчитанным на напряжение не менее 1000 В, например КБГ-М2. В качестве дросселя L1 можно использовать вторичную обмотку малогабаритного выходного трансформатора транзисторных радиоприёмников ВЭФ, Альпинист и др. Индуктивность дросселя составляет 0,07…0,1 Гн.

Трансформатор Т1 должен быть выполнен на кольцевом сердечнике из феррита марки 2000 НМ типоразмера К45Х28Х12, составленном из двух колец, или на Ш-образном ферритовом сердечнике Ш12Х15, составленном из двух половин без зазора. Использование трансформаторного железа исключается.

Данные обмоток (в порядке их намотки):

III — 500 + 50+50 витков (с отводами проводом ПЭЛШО 0,23 в случае тороида (кольца). Для Ш-образного сердечника можно использовать провод ПЭВ-1 0,23. Намотку вести с межслойной изоляцией из кабельной или конденсаторной бумаги;

Иа + Пб — 35+35 витков проводом ПЭЛШО-0,75 (намотка в два провода) в случае тороида, а для Ш-об-разного сердечника — ПЭВ-1 0,75;

la+ I6—11 + 11 витков проводом ПЭЛШО-0,28 (намотка в два провода) для обоих сердечников.

Транзисторы П210А…Г желательно подобрать в паре, т. е. с равными или по возможности близкими значениями обратных токов коллекторных переходов и коэффициентов усиления по току. Транзисторы установлены на унифицированных радиаторах по ТУ.8.650.022.

Настройка. Правильно собранный блок БТЗ обычно в дополнительной наладке не нуждается. Если же после сборки и проверки правильности монтажа блок не будет нормально работать, то основными причинами могут быть следующие:

если устройство зажигания переходит в режим непрерывной генерации искр и не управляется контактами прерывателя, то либо в нем применен тринистор с низким напряжением переключения, либо пробит диод VD11;

если отсутствует генерация преобразователя напряжения при заведомо исправных транзисторах, необходимо проверить правильность (полярность) подключения базовых обмоток трансформатора;

если работа преобразователя сопровождается хриплым или шипящим звуком, надо проверить диоды выпрямителя и правильность их включения, а затем транзисторов. Причиной большой нагрузки на преобразователь может быть также неисправность накопительного конденсатора С4. В случае исправности тринистора надо убедиться в отсутствии замыкания его корпуса на общую (минусовую) шину устройства.

Необходимо помнить, что корпус тринистора является анодом и в рабочем состоянии всегда будет находиться под высоким напряжением +400 В.

При проверке устройства зажигания вне автомобиля на стенде следует обязательно соединить корпус катушки зажигания с корпусом электронного блока (общая минусовая шина), так как в противном случае может произойти пробой катушки и повреждение деталей электронного блока.

Необходимо помнить, что напряжение на выходе катушки зажигания значительно более высокое, чем в обычной системе зажигания, поэтому надо соблюдать осторожность и правила техники безопасности.

Перед установкой устройства на автомобиль желательно проверить его работоспособность с катушкой зажигания при напряжении питания 12,6 В от аккумулятора. При этом следует помнить, что без подключенной свечи к высоковольтному выходу катушки зажигания нельзя испытывать устройство, так как это грозит выходом катушки из строя. Напряжение на накопительном конденсаторе проверяют в контрольной точке Б относительно корпуса блока (общей минусовой шины). Оно должно быть равно 400±20 В.

В случае большего отклонения напряжения следует переключить выводы вторичной обмотки трансформатора. Схема измерения напряжения на конденсаторе G4 приведена на рис. 6.

Желательно также убедиться, работает ли дополнительная цепочка C5R7R8VD12. Для этого ее вначале отключают. При имитации работы прерывателя искра просматривается в виде одной тонкой жилки толщиной до 0,2 мм с параметрами искрового разряда по рис. 5, где длительность импульсов 1 — 2 составляет около 0,4 мс. С подключением цепочки искра становится более яркой и широкой, видно много искровых разрядов в прямом и обратном направлениях — так называемая мохнатая искра.

Измерение амплитуды и длительности выходного импульса. Этот параметр блока является основным, определяющим его эффективность. Большинство авторов, представивших свои конструкции в технических изданиях за период 1976—1983 гг., не приводили данных о длительности искрового разряда, его характере, а также о схеме и методике его измерения.

Для измерения необходим генератор импульсов управления с регулируемой частотой следования в пределах 200 Гц. При отсутствии его потребуется автономный распределитель зажигания, вращаемый электродвигателем постоянного тока с переходной муфтой. Электродвигатель запитывают от зарядного устройства через реостат, для того чтобы регулировать скорость вращения валика распределителя.

Схема измерения параметров разряда представлена на рис. 7. Выбор измерительного сопротивления продиктован удобством масштаба отсчета и рассмотрения осциллограммы, а также соображениями техники безопасности. Зазор искрового промежутка свечи — не менее 1,5 мм.

Для реальной оценки длительности искрового разряда с учетом компрессии двигателя были проведены дополнительные измерения на разряднике с зазором 7 мм и на работающем двигателе, когда на вход осциллографа подавался сигнал с трех витков изолированного провода, намотанного на высоковольтный провод первого цилиндра. Результаты измерений примерно совпали. На режиме холостого хода двигателя длительность искрового разряда, равная 1,3 мс, сохраняется. На большей частоте вращения коленчатого вала двигателя остается шесть импульсов с длительностью 1,1 мс, а напряжение на накопительном конденсаторе уменьшается с 400 до 350 В. Амплитуда разрядных импульсов уменьшилась также на 10 %.

Автор имел возможность проверить БТЗ на стенде при частоте вращения валика распределителя до 720 об/мин с подключенным разрядником с зазором 7 мм. Длительность искрового разряда при этом уменьшалась до 1,0 мс, напряжение на накопительном конденсаторе снижалось до 320 В, а амплитуда разрядных импульсов падала на 25 %.

Для сравнения усовершенствованного блока БТЗ с другими известными устройствами были сняты осциллограммы характера искрового разряда на одном и том же сопротивлении в цепи свечи, равном 14 Ом. На рис. 5 они изображены с соблюдением масштаба амплитуд и длительности искры.

Заключение. Предлагаемая модификация БТЗ была собрана в виде макетного образца и испытана в 1984—1985 гг. на автомобилях ЗАЗ, Москвич-412, ВАЗ-2101. В общей сложности пройдено 15 000 км без каких-либо замечаний и отказов в работе. Блок зажигания в автомобиле ЗАЗ располагается в салоне за задним сиденьем на подставке для улучшения его охлаждения. Размещать его в моторном отсеке не следует из-за высокой температуры в летнее время, а также большой запыленности. В автомобилях Жигули и Москвич блок может быть укреплен под приборным щитком или в другом более удобном месте. Жгут, соединяющий БТЗ с системой зажигания автомобиля, может быть длиной до 1,5 м. На передней панели блока имеются гнезда под штепсельную вилку, куда выведено напряжение +210 В от первого выпрямительного мостика (до удвоения) для пользования в пути электробритвой типа Харьков или другой с коллекторным приводом.

Были проведены измерения содержания СО в выхлопных газах двигателя ЗАЗ с контактной системой зажигания и с блоком БТЗ. С контактной системой после оптимальной подрегулировки карбюратора содержание СО составило 3,3 %. При работе двигателя с блоком БТЗ и выполненных регулировках карбюратора согласно приведенной выше рекомендации с зазором в свечах 1,5 мм содержание СО составило 2,1 %.

Источник: В помощь радиолюбителю, №101.

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • Зарядное устройство с автоматическим отключением от сети

Ещё одна схема зарядного устройства очень похожа на предыдущую, но отличается способом отключения при окончании зарядки. Пуск зарядного устройства производится нажатием кнопки «пуск» на лицевой панели, при этом на схему подаётся питающее напряжение, реле К1 срабатывает и обеспечивает «самоподхват». Подробнее…

Гараж — это необходимый объект обладателей автомобилей и мотоциклов. Нередко гараж — это заветная мечта, а иногда ещё гараж бывает проблемой.

В этой статье рассмотрим необычный складывающийся гараж, занимающий минимум места.

Начинающим радиолюбителя можно рекомендовать изготовить не сложный прибор, наиболее часто используемым при ремонте или настройки радиотехнических устройств. Авометр объединяет в себе много­предельные амперметр и вольтметр по­стоянного и переменного тока, омметр, а иногда еще и испытатель маломощ­ных транзисторов. Подробнее…

Популярность: 10 165 просм.

схема и установка, отличия от контактной

Система зажигания (СЗ) фактически является одним из основных узлов в любом автомобиле, поскольку именно благодаря ей осуществляется запуск двигателя и его оптимальная работа в дальнейшем. На сегодняшний день существует несколько видов СЗ. О том, что представляет собой бесконтактная система зажигания и какие недостатки для нее характерны, вы сможете узнать из этого материала.

Конструкция и принцип действия БСЗ

Так какое зажигание лучше? Перед тем, как мы расскажем об установке и регулировке электронного зажигания своими руками, давайте рассмотрим принцип работы БСЗ и ее конструкцию. Итак, бесконтактная система зажигания представляет собой достаточно сложное по конструкции устройство, которое состоит из множества деталей.

Среди основных компонентов следует выделить:

  • катушка;
  • вакуумный и центробежный регуляторы напряжения;
  • коммутаторное устройство;
  • контроллер сигналов;
  • высоковольтные провода;
  • свечи;
  • аккумуляторная батарея.

Это основные элементы, который включает в себя комплект бесконтактного зажигания. Что касается принципа функционирования, то он довольно простой. Когда водитель поворачивает ключ в замке, на монтажный блок начинает поступать напряжение и здесь же оно распределяется между стартером, катушкой и прочими потребителями тока авто. Коленчатый вал вступает в движение, в результате чего контроллер сигналов начинает передавать импульсы на коммутаторный узел. Предназначение последнего заключается в остановке подачи напряжения на обмотки катушки, благодаря чему ан вторичных витках образуется ток более высокого напряжения.

Схема БСЗ с обозначением элементов

Этот ток позволяет генерировать сильную искру на свечи, которая впоследствии используется для воспламенения горючей смеси. Ток поступает на свечи в определенном порядке, в соответствии с положением коленчатого вала. Данный процесс осуществляется под контролем регуляторов, которые могут определять не только частоту, с которой движется вал, но и степень нагрузки на силовой агрегат. Если бесконтактная система зажигания будет отрегулирована должным образом, на свечах будет образовываться свеча высокой мощности, что обеспечит нормальной возгорание и сгорание горючей смеси.

Плюсы и минусы бесконтактного зажигания

В настоящее время схема бесконтактной системы зажигания реализуется на многих современных бензиновых автомобилях. Основной причиной тому является более высокая надежность системы по сравнению с контактной СЗ, а также более мощная искра.

Если сравнивать с контактной, то электронная система зажигания имеет такие достоинства:

  1. В конструкции СЗ отсутствуют контакты, поверхности которых могут подгорать в результате большого напряжения. Соответственно, проблема падения мощности искрообразования для БСЗ не характерна.
  2. Электронная система зажигания не включает в свою конструкции детали, характеризующиеся быстрым износом, соответственно, необходимость ремонта в таких СЗ возникает значительно реже.
  3. По сравнению с контактными, напряжение в БСЗ, которое подается на электроды свечей, составляет 24 Кв вместо 18 Кв. Это положительно в целом влияет на возгорание горючей смеси и ее сжигание в камерах.
  4. Еще одно неоспоримое преимущество — высокий ресурс эксплуатации и надежность (автор видео — канал Теория ДВС).
Рекомендуется к прочтению  Система зажигания нива 21213

Что касается недостатков, то он в данном случае один — датчик Холла, который выходит из строя чаще всего, является неремонтопригодным. Если контактны всегда можно подчистить, то этот контроллер в случае поломки только меняется. Но на практике данный компонент считается одним из наиболее надежных — обычно его ресурс эксплуатации составляет около 50 тысяч км пробега.

Инструкция по установке самодельного БСЗ

Если вы определились, какое зажигание лучше, то перейдем к вопросу установки более хорошего варианта на свой автомобиль. Установка бесконтактного зажигания начинается с монтажа блока, оборудованного стальной пластиной с посадочными отверстиями, которая необходима для охлаждения. Процедуру рассмотрим на примере классического автомобиля ВАЗ 2107. На левом лонжероне должны быть отверстия, к которым прикручивается коммутатор при помощи двух саморезов. Если отверстия нет, то найдите место рядом с катушкой, и просверлите отверстия там (автор видео — канал Sdelaj Sam! Pljus interesnoe!).

Устанавливая самодельное электронное зажигание, коммутатор нельзя монтировать рядом с бачком омывателя. Ведь если он даст течь, то вся электроника «накроется». Перед демонтажем высоковольтных проводов запомните их расположение.

Установка БСЗ осуществляется в таком порядке:

  1. Сначала с нового распределителя нужно снять крышку и установить прокладку. Трамблер монтируется на блоке так, чтобы его подвижный контакт располагался напротив метки на клапанной крышке силового агрегата. Так называемую юбку трамблера следует немного прижать при помощи крепежной гайки, это позволит предотвратить возможное проворачивание распределителя.
  2. Далее, необходимо произвести монтаж катушки на место установки. После этого следует подключить к ее выводам провода от реле замка, коммутатора, а также тахометра. Провод, который идет от контакта 1 на блоке, необходимо соединить с клеммой К непосредственно на катушке. Что касается провода от контакта под номером 4, то он соединяется с клеммой Б.
  3. После выполнения этих действия нужно установить зазор на электродах свечей около 0.8-0.9 мм, а затем сами свечи можно закрутить в посадочные места. Установите крышку на распределительный узел и подключите все необходимые провода в соответствующем порядке. Затем вам остается только подключить вакуумную магистраль. Сделав это, можно приступать к регулировке узла.

Советы по настройке зажигания

Процедура регулировки СЗ осуществляется на прогретом двигателе, она может быть произведена двумя способами:

  • при помощи стробоскопа;
  • на слух.

Стробоскоп представляет собой специальное устройство с лампой, которая моргает в случае подачи сигнала от датчика Холла. Если вы поднесет работающий прибор к маховику коленвала при включенном двигателе, то сможете увидеть положение насечки. Именно это позволяет произвести наиболее точную настройку.

Чтобы произвести регулировку, нужно подключить питание прибора к АКБ, а второй провод — к высоковольтному кабелю на первой свечи. Затем отпустите гайку, фиксирующую распределитель, а моргающую лампочку поднесите к шкиву. Корпус трамблера нужно осторожно поворачивать, не спеша, до того момента, пока метка на шкиве не будет установлена напротив короткой метки. Сделав это, гайку можно затянуть.

Что касается метода на слух, то настройка в данном случае производится в несколько этапов:

  1. В первую очередь, нужно завести мотор, после чего немного отпустить гайку, фиксирующую трамблер.
  2. Медленно проверните распределитель в пределах пятнадцати градусов. Вам необходимо найти положение, при котором силовой агрегат будет работать наиболее оптимально и стабильно.
  3. Когда этот момент будет найдет, гайку распределителя можно закрутить.

Видео «Ремонт БСЗ в домашних условиях»

Подробная и наглядная инструкция касательно ремонта БСЗ в домашних условиях приведена на видео ниже (автор — Владимир Воронов).

Загрузка …

Доработка системы зажигания авто для лучшего пуска двигателя

Самым ответственным моментом при эксплуатации автомобиля является пуск двигателя. Особенно актуален этот вопрос в зимнее время года, когда на улице стоят большие морозы. Все смазочные материалы, в том числе и масло в картере двигателя внутреннего сгорания, теряют вязкость, и создают чрезмерную дополнительную механическую нагрузку на стартер.

Рекомендаций по решению этой проблемы в Интернете представлено великое множество, от подогрева масла в картере двигателя дополнительным нагревателем, до впрыскивания в цилиндры двигателя перед пуском легко воспламеняющихся веществ. Совершенствуются коммутаторы системы зажигания, делают многоискровой режим зажигания, оптимизируют взаимное расположение и форму электродов свечей.

Но все это не дает максимального эффекта по одной простой причине, во время пуска двигателя напряжение бортовой сети автомобиля падает до 9,5 V и соответственно значительно падает величина высокого напряжения на выходе катушки зажигания. Предложенная доработка системы зажигания позволяет устранить этот недостаток.

Принцип работы системы зажигания автомобиля

Рассмотрим часть схемы электрооборудования автомобиля, составляющую систему зажигания. От аккумулятора напряжение положительной полярности, через предохранитель поступает на контакты замка зажигания и реле зажигания.

Когда ключ из замка зажигания автомобиля вынут, все контакты в замке зажигания разомкнуты, и напряжение на систему зажигания не подается. Если ключ вставить в замок зажигания и повернуть его по часовой стрелке на один сектор, контакты в замке зажигания замкнутся и напряжение поступит на обмотку реле зажигания, по обмотке потечет ток, создаст магнитное поле, которое притянет якорь реле.

Контакты реле замкнутся, напряжение питания поступит на низковольтную обмотку катушки зажигания и через нее на коллектор транзистора VT коммутатора. Пока вал двигателя не вращается, на базу транзистора не поступают открывающие импульсы управления, и он закрыт, ток дальше не течет. В применяемых в настоящее время схемах зажигания автомобилей, элементов начерченных синим цветом (диод VD1 и конденсатор С1) нет.

Электрическая схема доработанной системы зажигания

Для пуска двигателя необходимо повернуть ключ в замке зажигания по часовой стрелке еще на один сектор. Стартер начнет вращаться и на коммутатор с датчика вращения поступят управляющие импульсы. Транзистор VT на время 1-2,5 мс откроется и через низковольтную обмотку катушки зажигания пойдет ток. Сердечник катушки начнет намагничиваться, и создаст в высоковольтной обмотке катушки зажигания высокое напряжение. Величина напряжения будет зависеть от соотношения количества витков в катушках.

Для надежной работы двигателя система зажигания должна создавать высокое напряжение с запасом, величиной не менее 25 кВ. Напряжение, при котором происходит пробой (образуется искра) между электродами в свече составляет 14-17 кВ. Таким образом, должен обеспечивается запас по высокому напряжению около 7 кВ, что гарантирует стабильную искру в свечах при любых условиях запуска двигателя.

Величина высокого напряжения
в момент запуска двигателя автомобиля

При работе двигателя, за счет работы генератора, напряжение в бортовой сети автомобиля обычно составляет 14,1±0,2 В. На первичную обмотку катушки зажигания, за вычетом падения напряжения (1,2 В) на транзисторе VT, поступают импульсы величиной 14,1 В-1,2 В=12,9 В. В этом режиме величина импульсов на вторичной обмотке катушки зажигания для образования искры в свечах составляет 27 кВ.

В момент пуска двигателя напряжение на выводах заряженного аккумулятора может снижаться до 9,5 В, если аккумулятор заряжен не полностью, то напряжение может быть и меньше. Тогда с учетом падения напряжения на транзисторе VT, величина напряжения на первичной обмотке катушки составит 9,5 В-1,2 В=8,3 В, это на 35% меньше, чем напряжение при работающем двигателе. При этом величина высокого напряжения тоже уменьшится на 35% и составит 17 кВ. Новая свеча создает искру при напряжении 12-17 кВ. Если установлены свечи с напряжением пробоя 17 кВ, то в таком случае искрообразование может быть нестабильным. Расчеты показали, что даже для нового автомобиля с узлами и деталями системы зажигания, находящимися в исправном состоянии, запаса по высокому напряжению может и не быть.

Что же тогда говорить о системе зажигания автомобиля, находящегося в эксплуатации не один год. Происходит старение изоляции свечей и выгорание ее электродов. В высоковольтных проводах и катушке зажигания тоже происходит старение изоляции, что приводит к дополнительным потерям. Несколько лет эксплуатируемый аккумулятор тоже вносит свою лепту. Путь тока от аккумулятора к катушке зажигания проходит по проводам через контакты предохранителя, реле зажигания, соединительные колодки и клеммы. На них тоже происходит падение напряжения.

В дополнение для устойчивого возникновения искры в зазоре свечи при сильно охлажденной воздушно бензиновой смеси требуется подавать на нее более высокое напряжение. Таким образом, запуск двигателя старого автомобиля с первой попытки при больших морозах существующая схема зажигания обеспечить с гарантией не может. Последующие попытки запуска двигателя могут полностью разрядить аккумулятор, с чем большинству автолюбителей доводилось сталкиваться.

Электронная контактная система зажигание своими руками. Электронное зажигание для авто

Приветствую уважаемых коллег-радиолюбителей. Многие имели дело с очень простыми, и потому очень не надёжными системами зажигания в мотоциклах, мопедах, лодочных моторах и подобных изделиях прошлого века. Был и у меня мопед. Искра у него пропадала так часто и по стольким разным причинам, что это очень надоедало. Вы, вероятно, и сами видели постоянно встречающихся на дорогах мотолюбителей без искры, которые пытаются завестись с разбега, с горки, с толкача. В общем пришлось придумывать свою систему зажигания. Требования были такие:

  • должна быть максимально проста, но не в ущерб функциональности;
  • минимум переделок в месте установки;
  • питание безаккумуляторное;
  • улучшение надёжности и мощности искры.

Всё это, или почти всё, было реализовано и прошло многолетнюю проверку. Остался доволен и хочу предложить собрать такую схему вам, у кого остались двигатели из прошлого века. Но и современные двигатели можно снабдить этой системой, если собственная пришла в негодность, а покупать новую дорого. Не подведёт!

С новой системой электронного зажигания искра увеличилась на порядок, ранее в солнечный день её и не увидишь, после зазор свечи был увеличен с 0.5 до ~1 мм и искра бело-голубая (на испытательном стенде в лабораторных условиях искрой поджигалась даже тонкая киповская бумага). Всякие мелкие загрязнения свечи стали не существенными, так как система тиристорная. Заводиться стал мопед не то что с пол — с четверть оборота. Многие старые свечи снова можно было вытащив из «мусорного ведра» ставить в работу.

Был убран вечно «плюющийся» и загаживавший радиатор декомпрессор, ведь заглушить мотор теперь можно простым выключателем или кнопкой. Был отключён вечно требующий ухода прерыватель — раз настроив, ухода не требует никакого.

Схема модуля зажигания

Монтажная схема модуля

Печатные платы для сборки

Для малого потребления тока была выбрана КМОПовская микросхема КР561ЛЕ5 и стабилизатор на светодиодах. КР561ЛЕ5 работает начиная с 3 В и с очень малым (15 uA) током, что является важным для данной схемы.

Компаратор на элементах: DD1.1, DD1.2, R1, R2 служит для более чёткого реагирования на уровень нарастающего напряжения после индукционного датчика и для устранения реакции на помехи. Формирователь импульса запуска на элементах: DD1.3, DD1.4, R3, C1 нужен для формирования нужной длительности импульса, для хорошей работы импульсного трансформатора, чёткого отпирания тиристора и для всё той же экономии тока питания схемы.

Импульсный трансформатор Т1 служит также для развязки от высоковольтной части схемы. Ключ выполнен на транзисторной сборке К1014КТ1А — он формирует хороший импульс, с крутыми фронтами и достаточным током в первичной обмотке импульсного трансформатора, что обеспечивает, в свою очередь, надёжное отпирание тиристора. Импульсный трансформатор изготовлен на ферритовом кольце 2000НМ / К 10*6*5 с обмотками по 60-80 витков провода ПЕВ или ПЕЛ 0.1 — 0.12 мм.

Стабилизатор напряжения на светодиодах был выбран по причине очень малого начального тока стабилизации, что ещё вносит свой вклад в экономию тока потребления схемы, но, при этом, чётко стабилизирует напряжение на микросхеме на уровне 9 В (1.5 В один светодиод) и ещё служит дополнительно световым индикатором наличия напряжения с магнеты, в схеме.

Стабилитроны VD13, VD14 служат для ограничения напряжения и включаются в работу только при очень больших оборотах двигателя, когда экономия питания не очень важна. Желательно намотать такие катушки в магнете, чтобы эти стабилитроны включались только на самой верхушке, только на самом максимально возможном напряжении (в последней модификации стабилитроны не устанавливались, т.к. напряжение итак никогда не превышало 200 В). Две ёмкости: С4 и С5 для увеличения мощности искры, в принципе схема может и на одной работать.

Важно! Диод VD10 (КД411АМ) подбирался по импульсным характеристикам, другие очень грелись, не выполняли в полной мере свою функцию защиты от обратного выброса. К тому же через него идёт обратная полуволна колебания в катушке зажигания, что увеличивает длительность искры почти в два раза.

Ещё эта схема показала нетребовательность к катушкам зажигания — ставились любые какие были под рукой и все работали безупречно (на разные напряжения, под разные системы зажигания — прерывательные, на транзисторном ключе).

Резистор R6 предназначен для ограничения тока тиристора и для его чёткого запирания. Его подбирают в зависимости от используемого тиристора так, чтобы ток через него не мог превысить максимальный для тиристора и, самое главное, чтобы тиристор успевал запираться после разряда ёмкостей С4, С5.

Мостики VD11, VD12 выбираются по максимальному напряжению с катушек магнеты.

Катушек, заряжающих ёмкости для высоковольтного разряда, две (это решение также гораздо экономичнее и эффективнее чем преобразователь напряжений). Такое решение пришло потому, что катушки имеют разное индуктивное сопротивление и их индуктивные сопротивления зависят от частоты вращения магнитов, т.е. и от частоты вращения вала. Эти катушки должны содержать разное количество витков, тогда на малых оборотах будет работать в основном катушка с большим количеством витков, а на больших с малым, так как увеличение наводимого напряжения с увеличением оборотов будет падать на увеличивающемся индуктивном сопротивлении катушки с большим количеством витков, а на катушке с малым количеством витков напряжение растёт быстрее, чем её индуктивное сопротивление. Таким образом всё друг друга компенсирует и напряжение заряда ёмкостей в определённой степени стабилизируется.

Обмотка для зажигания в мопеде «Верховина-6» перематывается так:

  1. вначале замеряется напряжение на экране осциллоскопа с этой обмотки. Осциллоскоп нужен для более точного определения максимального амплитудного напряжение на обмотке, так как обмотку близко от максимума напряжения закорачивает прерыватель и тестер покажет некое заниженное действующее значение напряжение. Но ёмкости будут заряжаться до максимального амплитудного значения напряжения, да ещё и полным (без прерывателя) периодом.
  2. после, сматывая обмотку, надо посчитать количество её витков.
  3. разделив максимальное амплитудное напряжение обмотки на число её витков получаем сколько вольт даёт один виток (вольт/виток).
  4. разделив необходимые для нашей схемы напряжения на полученный (вольт/виток) получим количество витков, которые необходимо будет намотать для каждого из нужных напряжений.
  5. наматываем и выводим на клемник. Обмотка освещения остаётся прежней.

Используемые в схеме детали

Микросхема КР561ЛЕ5 (элементы 2 ИЛИ НЕ); интегральный ключ на МОП-транзисторе К1014КТ1А; тиристор ТС112-10-4; выпрямительные мосты КЦ405 (А,Б,В,Г), КЦ407А; диоды импульсные КД 522, КД411АМ (очень хороший диод, другие греются или работают гораздо хуже); светодиоды АЛ307 или другие; конденсаторы С4,С5 — К73-17/250-400В, остальные любого типа; резисторы МЛТ. Файлы проекта сложены сюда . Схема и описание — ПНП .

Обсудить статью СХЕМА БЛОКА ЭЛЕКТРОННОГО ЗАЖИГАНИЯ

Электроника за рулем

Как известно электронные системы зажигания на двигателе показали себя с очень хорошей стороны- это и снижение расхода топлива, более уверенный запуск двигателя (особенно в холодное время) и лучшая приемистость. Здесь мы рассмотрим разновидности электронных систем зажигания , их устройство , способы диагностики и ремонта.

Итак. Может быть кто-то еще и помнит те времена когда на автомобилях еще не было электронного зажигания. В то время все выглядело предельно просто- контактная пара на распределителе (трамблере) и катушка (бабина). при включении зажигания напряжение бортовой сети +12 Вольт проходит через катушку и попадает на контактную пару. При повороте ротора в трамблере кулачок размыкает контакты, в этот момент в катушке происходит перепад напряжения и за счет ЭДС самоиндукции на высоковольтной обмотке возникает напряжение.
Таким контактным зажиганием снабжались все отечественные авто (да многие из них и сейчас бороздят просторы нашей родины. ) и при всей своей простоте у данной конструкции имеется один очень огромный недостаток- это постоянное подгорание контактов (иногда, правда значительно реже, износ кулачка).

В электронном зажигании работою высоковольтной катушки управляет электроника (ключ на мощном транзисторе), а вот сам датчик положения распределителя зажигания существует трех видов:

Рис 1. Разновидности электронного зажигания

1. Все та же контактная пара. По сути все осталось по старому- контакты размыкаются при помощи кулачка, с той лишь разницей что на самих контактах уменьшился ток и поэтому они стали более долговечными. На рисунке это вариант «А». Цифрами условно показаны: 1- контактная пара, 2- блок электронного зажигания, 3- распределитель зажигания.
2. Датчик в виде однофазного генератора переменного тока. Звучит мудрено, но на практике все выглядит очень даже просто- на статоре распределителя крепится постоянный магнит, корпусе распределителя- электромагнитный датчик (катушка), а на подвижном роторе- пластина из магнитомягкой стали с прорезями. При вращении ротора, начинает вращаться и пластина, открывая-закрывая магнитное поле между магнитом и датчиком.
На рисунке этот вариант обозначен буквой «Б».
3. Датчик Холла. В принципе здесь практически все так-же как и в предыдущем варианте: положение ротора распределителя определяется за счет изменения электромагнитного поля, только датчики сделаны немного по другому.

Как проверить исправность электронного коммутатора

Думается что вывод здесь напрашивается сам: чтобы проверить исправность блока электронного зажигания необходимо подать на его вход управляющие импульсы- просто заставить его подумать что он подключен к работающему распределителю. В качестве источника таких импульсов может послужить самый обыкновенный генератор прямоугольных импульсов с рабочей частотой 1- 200 Гц, правда к нему есть основное требование- он в обязательном порядке должен формировать импульсы не амплитудой не менее 8 Вольт.
Вот его примерная схема

Примечание : у нас на сайте есть еще один вариант Как проверить электронный коммутатор

Подключение устройства для проверки и диагностики следующее:

Обозначения на рисунке:
1. Генератор прямоугольных импульсов.
2. осциллограф для контроля выходящих импульсов
3. Стабилизатор сетевого напряжения (не обязателен)
4. Источник напряжения 12 Вольт мощностью не менее 20 Вт
5. Проверяемый блок
6. Катушка зажигания
7. Свеча зажигания.

Ну, вот, здесь примерно все ясно- давайте теперь рассмотрим все виды устройств в отдельности.

Электронное зажигание контактного типа

Данное устройство выпускалось под названием КТ-1 и было предназначено для установки в автомобили с механическими контактами в прерывателе (Москвич, Жигули, Волга).

Вот его полная схема, а рисунком ниже показаны осциллограммы в контрольных точках:

Система электронного зажигания КТ-1. схема электрическая

Начнем с того момента когда контакты в распределителе разомкнуты (рис а). В этот момент конденсатор С1 начинает заряжаться по цепи +12В,VD5, R4 , эмиттер-коллектор VT2, С2, база-эмиттер VT3, «масса».
Стабилизатор тока, собранный на транзисторах VT1, VT2 позволяет заряжаться конденсатору С2 стабилизированным током (рис б) и по этому при разной частоте размыкания контактов, на VT3 формируются импульсы одинаковой длительности.
Напряжение питания +12 Вольт через VD3, R8 попадает на базу транзистора VT4 и отпирает его. В результате VT5, VT6 запираются.

Как только контакты в прерывателе замкнутся, начинается процесс разряда конденсатора С2. Цепь VD3, C1, R8 закрывается и в этот момент VT3 запирается обратным потенциалом на С2. Высокий уровень с коллектора VT3 через диод VD4 подается на VT4 и держит его в открытом состоянии.
Когда напряжение на С2 достигнет уровня срабатывания, открывается транзистор VT3, а VD4 запирается, но так как контакты прерывателя разомкнуты через цепь VD3, R8, то транзистор VT4 будет продолжать удерживаться в открытом состоянии.
Положительный потенциал коллектора VT4 открывает транзисторы VT5, VT6 и через первичную обмотку катушки зажигания проходит ток.
В момент t3 транзистор VT4 переходит в открытое состояние, транзисторы VT5, VT6 запираются и резко убывающий ток в первичной обмотке вызовет возникновение искры на свече зажигания.
В период t3-t4 происходит до-зарядка конденсатора C2 до уровня напряжения источника питания, и как только контакты прерывателя разомкнуться, весь процесс повторится.

Эксплуатация данного блока зажигания выявила следующие недостатки:

1. При включенном долгое время зажигании при неработающем двигателе или при разомкнутых контактах, транзистор VT6 находится под постоянной нагрузкой что приводит к его перегревы и выходу из строя.
2. Работоспособность схемы очень зависит от правильности установки угла опережения зажигания.

коммутаторы 36.3734 и Б550

Эти коммутаторы предназначены для совместного использования с датчиком Холла и устанавливались на автомобили ВАз-2108, 09. Вместо них можно применить коммутатор 36.40.3734. Но и это еще не все- полная совместимость с импортными коммутаторами позволяет применять его и на зарубежных автомобилях марок FORD, OPEL, WOLKSWAGEN.

Схема коммутатора и осциллограммы

Осциллограммы в контрольных точках

Импульсы с датчика Холла поступают на вход 6 (рис А) и попадают на базу VT1. Транзистор VT1 инвертирует импульсы (рис в) и через R5 они проходят к базе VT2 (рис И).

Для избежания перегрева выходного ключа, в коммутаторе предусмотрена схема, закрывающая выходной каскад при отсутствии входного сигнала и при замкнутом состоянии датчика Холла:
На вход 6 микросхемы DA1.2 (рис Д) через VD4 поступает сигнал с выходного каскада, одновременно с этим на вывод 5 микросхемы DA1.2 поступает входной сигнал (рис Е). Каскад на DA1.2 собран по схеме интегратора, импульсы на его выходе имеют трапециедальную форму (рис Ж) и они поступают на компаратор DA1.3.
Если импульсы не проходят на входы DA1.2 то компаратор DA1.3 на выходе 8 выдаст высокий уровень и в результате VT2 откроется, а выходной каскад закроется.

В динамическом режиме микросхема DA1.3 формирует прямоугольные импульсы (рис З). Микросхема DA1.4 выполняет роль компаратора: как только напряжение на резисторах R35, R36 превысит допустимое, компаратор сработает и откроет транзистор VT2. При этом выходной каскад на транзисторах VT3, VT4 закроется.

Эксплуатация данного коммутатора показала его достаточную надежность. Если и происходили случаи выхода из строя выходного транзистора, то в основном по вине неисправного генератора или замкнутой катушки зажигания.
Единственный недостаток выявленный в процессе эксплуатации- перебои в работе на повышенных оборотах двигателя, поэтому автором было предложено ввести в схему дополнительную цепь- резистор R* (вывод 5 микросхемы DA1.2).

коммутатор 1302.3734

Коммутатор 13.3734-O1

Показанные выше два вида коммутаторов применяются в бесконтактных системах зажигания с применением генератора тока. (что это такое смотрим в начале статьи).
Такие системы зажигания применялись в автомобилях Волга, УАЗ, РАФ, Газель. В них чаще всего также выходит из строя ключевой выходной транзистор. Причем как выяснилось в большинстве коммутаторов под транзистором отсутствовала термо-отводящая паста, так что замене транзистора следует эту пасту нанести.

Транзисторы в коммутаторах можно менять на близкие по параметрам: КТ898А, КТ8109А, КТ8117А

При подготовки материала была использована информация из журналов

Использовать электронное зажигание на ВАЗ 2107 оказывается намного эффективнее, нежели контактное. Чтобы уяснить, какие преимущества появляются при установке бесконтактной системы, необходимо вкратце рассмотреть историю ее развития. И начать, конечно же, стоит с контактной системы, именно с нее и началось развитие. Также необходимо внимательно изучить основные компоненты зажигания, определить, какие функции они осуществляют. Стоит также отметить, что установка электронного зажигания позволяет добиться более высоких показателей мощности и надежности всего автомобиля.

Основные элементы систем зажигания

К основным элементам можно отнести такие, как свечи зажигания, бронепровода, катушки. Это узлы, которые присутствуют в любой системе. Правда, у них имеются некоторые отличия. Конечно, свечи используются на всех двигателях одинаковые. Если речь идет об автомобилях ВАЗ. Бронепровода могут быть как в резиновой, так и в силиконовой оболочке. У них есть как плюсы, так и минусы. Например, силиконовые больше подвержены разрушению внутреннего токопроводящего слоя.

Рекомендуется к прочтению  Бесконтактное зажигание - как оно работает?

А провода в резиновой оболочке плохо переносят низкие температуры — они становятся твердыми, теряют свою эластичность. несмотря на то, что обладают одинаковыми функциями, тоже отличаются. Если в контактной системе напряжение пробоя должно быть 25-30 кВ, то электронная система зажигания работает при значении этого параметра порядка 30-40 кВ. И если в этих двух системах используется одна катушка, то микропроцессорные оснащаются двумя или четырьмя. По одной катушке на 1-2 свечи.

Контактная система

Такая конструкция была популярно вплоть до середины 90-х годов прошлого века. Но она ушла в небытие, так как морально устарела. В ее основе находится распределитель зажигания, в котором ротор имеет небольшой участок, выполненный в виде кулачка. С его помощью приводится в движение прерыватель — две металлические пластины, изолированные друг от друга. На них есть контакты, которые замыкаются и размыкаются под действием кулачка.

Надежность работы данной системы зависит напрямую от состояния этой контактной группы. Дело в том, что контакты коммутируют напряжение 12 Вольт, следовательно, риск того, что они подгорят, очень высокий. Также они соприкасаются, следовательно, имеет место быть механическое воздействие. Отсюда уменьшение толщины контактов, следовательно, увеличение зазора между ними. По этой причине нужно постоянно следить за состоянием контактной группы. А вот электронная система зажигания позволяет избавиться от таких мелких недочетов.

Контактно-транзисторная

Немного совершеннее данная система, но до идеала ей все равно еще далеко. Как и в прошлом типе, здесь имеется и трамблер, и контактная группа. С небольшим отличием — она коммутирует малое напряжение, меньше 1 Вольта. Больше для управления электронным ключом, собранным на полупроводниковом транзисторе, и не требуется. Преимущество данной системы становится понятным из вышесказанного. Но недостаток все равно остается — присутствует механическое воздействие. Следовательно, контакты постепенно изнашиваются и требуют замены. Долго не поездить без своевременного техобслуживания. Хоть это и почти электронное зажигание на ВАЗ 2107, но до БСЗ еще далеко ему.

Бесконтактная система

А вот бесконтактная система уже ближе к идеалу. В ней нет контактной группы, которая является наиболее уязвимым местом. Следовательно, обслуживать ее не потребуется. Все функции прерывателя возложены на работающий на эффекте Холла. Он монтируется внутри распределителя, на том самом месте, на котором стояла группа контактов. Для нормальной работы системы зажигания необходимо, чтобы датчик правильно функционировал. А он не сможет работать без металлической юбки с прорезями, которая вращается в области его активного элемента. Схема электронного зажигания имеет высокую степень надежности во многом благодаря тому, что в ней нет механического взаимодействия элементов.

Датчик Холла

Когда работает двигатель, вращение передается на ось трамблера. В верхней его части вращается бегунок, который распределяет высокое напряжение от катушки к свечам зажигания. В нижней части находится упомянутая ранее металлическая юбка. Она расположена таким образом, что вращается в области действия датчика. Следовательно, последний, под воздействием металла, выдает импульс. И таких скачков за один оборот происходит четыре (по числу цилиндров). Далее этот импульс поступает к коммутатору. Установка электронного зажигания проводится довольно быстро, так как содержит небольшое число элементов. Среди них стоит выделить коммутатор, но о нем будет рассказано позже.

Микропроцессорная система

Данный тип системы является наиболее совершенным. Причина в том, что она работает путем обработки данных с множества датчиков. Она активно применяется только на инжекторных двигателях, так как только в них можно осуществить управление топливоподачей. Производится контроль абсолютно всех параметров работы двигателя. Сигналы с датчиков поступают на электронный блок управления — мозг всей системы. Он изготовлен на основе микропроцессора, который может совершать тысячи операций в секунду. Схема электронного зажигания такого типа довольно сложна, а также требует программирования. Ведь микропроцессор должен знать, что от него желает пользователь получить при определенном типе входного сигнала.

Датчики в микропроцессорной системе

Как было сказано, в данном типе системы зажигания необходимо анализировать все параметры. В частности, с повышением требований к токсичности, вовсю начали использоваться лямбда-зонды. Микроконтроллерная схема электронного зажигания ВАЗ позволяет подключать несколько типов считывающих устройств. Конечно, использование лямбда-зондов в автомобилях спорно, ведь стоит посмотреть на то, сколько вредных газов и жидкостей выбрасывается предприятиями в окружающую среду. Но законодателей в Европе это волнует в последнюю очередь. Инжекторные семерки соответствуют нормам токсичности Евро-2 и Евро-3. К сожалению, на данный момент действуют нормы Евро-6.

Для нормальной работы двигателя проводить контроль скорости, частоты вращения коленвала, воздуха, поступающего в топливную рампу. Также проводится анализ содержания СО в выхлопной системе, определяется положение заслонки дросселя относительно начальной точки. Кроме того, ежесекундно определяется наличие детонации в двигателе, производится регулировка И все это делает система, которая изготовлена на микропроцессоре. Тысячи операций он проводит, чтобы своевременно подать сигналы на исполнительные механизмы (например, электроклапаны форсунок). Так как установить электронное зажигание такого типа довольно сложно на карбюраторные двигатели, стоит все-таки остановиться на использовании БСЗ.

Коммутатор

Этот элемент является предшественником микропроцессорного электронного блока управления. С помощью коммутатора производится подача сигнала на катушку зажигания. Единственный датчик, который участвует в его работе — Холла. С его помощью определяется момент начала подачи напряжения. Правда, уровень сигнала, который поступает от датчика Холла, очень маленький. Если его подать на высоковольтную катушку, то на выходе напряжения для разжигания искры окажется недостаточно. Между прочим, электронное зажигание 2106 может без труда быть смонтировано на весь модельный ряд так как его установка одинакова.

Поэтому возникает необходимость применения буферного узла — усилителя. Именно такие функции и исполняет коммутатор. При его работе выделяется большое количество тепла, поэтому к установке блока следует подойти со всей ответственностью. Его нужно монтировать так, чтобы задняя его часть максимально плотно прилегала к элементу кузова автомобиля. В противном случае возможен быстрый выход из строя полупроводниковых элементов системы. Штекер, при помощи которого производится подключение коммутатора, должен иметь защиту от попадания пыли и влаги.

Как установить распределитель

Теперь стоит поговорить о том, как смонтировать и настроить электронное зажигание на 2107. Установка распределителя БСЗ на классику аналогична процедуре, проводимой при монтаже простого трамблера контактной системы. Сначала выставляете шкив по меткам на блоке двигателя. Там три метки, которые определяют величину угла опережения — 0, 5, 10 градусов. Устанавливаете шкив напротив той метки, которая соответствует значению 5 градусов. Именно оно является наиболее оптимальным при работе на бензине с октановым числом 92.

Теперь, сняв крышку распределителя, устанавливаете бегунок таким образом, чтобы он оказался напротив вывода, который идет к свече первого цилиндра. Теперь остается только установить корпус трамблера на свое место и наживить гайку его крепления. Далее ставите на место крышку распределителя, зажимаете ее пружинными фиксаторами. Вот и все, первоначальная установка зажигания завершена, теперь можно приступить к точной настройке.

Установка угла опережения

Сразу стоит отметить, что регулировка «на слух» может проводиться, но только в самых экстренных случаях. Например, если поломка застала вас в пути и необходимо доехать до места проведения ремонта. В других случаях нужно воспользоваться хотя бы простыми средствами — например, индикатором на светодиоде. Лучше всего, если электронное зажигание на ВАЗ 2107 будет регулироваться с использованием стробоскопа или мотортестера.

Если имеется у вас стробоскоп, то задача по настройке угла опережения зажигания упрощается во много раз. Между прочим, такое устройство можно собрать даже из светодиодного фонарика. Устанавливаете управляющий вывод с на бронепровод первого цилиндра. Теперь нужно направлять луч стробоскопа на шкив коленвала. Конечно, двигатель необходимо завести. Вращая корпус трамблера, добиваетесь того, чтобы метка на коленчатом валу проходила напротив соответствующих ей засечек на блоке четко в момент вспышки.

Что дает установка БСЗ на семерку?

А вот сейчас начнется расхваливание бесконтактной системы. Ни для кого не секрет, что электронное бесконтактное зажигание намного лучше своего предшественника. Причина тому — отсутствует необходимость в частом контроле распределителя и прерывателя. А что нужно современному водителю? Чтобы его машина ездила, да не требовала от него знаний в устройстве автомобиля и его систем. Заметьте, чем современнее машина, тем меньше владелец вмешивается в ее работу. Максимум — это замена жидкостей и фильтров.

И БСЗ сделала шаг навстречу водителям, она избавила их от нужды постоянно проверять зазоры, регулировать угол опережения, чистить контакты. Сейчас достаточно большое число людей, которые коробку скоростей от поршня отличить могут с большим трудом. Сможет ли он сделать все вышеописанные процедуры? Именно. Следовательно, электронное бесконтактное зажигание позволяет увеличить надежность автомобиля. А необходимость в частых регулировках отпадает.

Выводы

Анализируя все «за» и «против», можно прийти к одному выводу — чем современнее система зажигания, тем она надежнее и эффективнее. Но если у вас карбюраторная семерка, то для монтажа микропроцессорной системы вам потребуется модернизировать топливоподачу. Для этого нужно установить насос, рампу, форсунки, электронный блок управления, а также кучу датчиков для обеспечения нормальной работы. Но более простой выход — это просто смонтировать электронное зажигание на ВАЗ 2107. И по цене не очень много, и по затратам времени тоже.

Все автолюбители знают, что для розжига топлива применяется искра на свече зажигания, которая воспламеняет топливо в цилиндре, а напряжение на свече достигает уровня 20Кв. На старых автомобилях применяются классические, системы зажигания, которые имеют серьёзные недостатки. Именно о модернизации и доработке этих схем мы и поговорим.

Емкость в этой конструкции заряжается от стабильного по амплитуде обратного выброса блокинг-генератора. Амплитуда этого выброса почти не зависит от напряжения аккумуляторной батареи и числа оборотов коленчатого вала и поэтому энергии искры всегда достаточно для воспламенения топлива.

Схема зажигания выдает потенциал на накопительном конденсаторе в диапазоне 270 — 330 Вольт при падении напряжения на аккумуляторе до 7 вольт. Предельная частота срабатывания около 300 импульсов в секунду. Потребляемый ток около двух ампер.

Схема зажигания состоит из ждущего блокинг-генератора на биполярном транзисторе, трансформатора, цепи формирования импульсов C3R5, накопительной емкости С1, генератора импульсов на тиристоре.

В начальный момент времени, когда контактные S1 замкнуты, транзистор заперт, а емкость С3 разряжена. При размыкании контакта конденсатор будет заряжаться по цепи R5, R3.

Импульс тока заряда запускает блокинг-генератор. Передний фронт импульса с вторичной обмотки трансформатора запускает тиристор КУ202, но, так как емкость С1 предварительно не была заряжена, на выходе устройства искра отсутствует. С течением времени, под действием коллекторного тока транзистора осуществляется насыщение сердечника трансформатора и поэтому блокинг-генератор вновь окажется в ждущем режиме.

При этом на коллекторном переходе формируется выброс напряжения, который трансформируется в в третьей обмотке и через диод зарядит емкость С1.

При повторном размыкании прерывателя в устройстве происходит тот же алгоритм с той лишь разницей, что открывшийся передним фронтом импульса тиристор подсоединит уже заряженную емкость к первичной обмотке катушки. Ток разряда конденсатора С1 индуцирует во вторичной обмотке высоковольтный импульс.

Диод V5 защищает базовый переход транзистора. Стабилитрон предохраняет V6 от пробоя, если блок включен без бобины либо без свечи. Конструкция нечувствительна к дребезжанию контактных пластин прерывателя S1.

Трансформатор изготавливается своими руками на магнитопроводе ШЛ16Х25. Первичная обмотка содержит 60 витков провода ПЭВ-2 1,2, вторичная 60 витков ПЭВ-2 0,31, третья 360 витков ПЭВ-2 0,31.

Мощность искры в этой конструкции зависит от температуры биполярного транзистора VT2, которая на горячем двигателе снижается, а на холодном наоборот, тем самым, существенно облегчая запуск. В момент размыкания и замыкании контактов прерывателя импульс следует через конденсатор С1, кратковременно отпирая оба транзистора. При запирании VT2 появляется искра.

Емкость С2 сглаживает импульсный пик. Сопротивления R6 и R5 ограничивают максимум напряжения на коллекторном переходе VT2. При разомкнутых контактах оба транзистора закрыты, при длительно замкнутых контактах ток идущий через емкость С1 постепенно снижается. Транзисторы плавно закрываются, защищая катушку зажигания от перегрева. Номинал резистора R6 подбирается для конкретной катушки(на схеме он показан для катушки Б115), для Б116 R6 = 11 кОм.

Как видите на рисунке выше печатная плата устанавливается поверх радиатора. Биполярный транзистор VT2 через термопасту и диэлектрическую прокладку установлен на радиатор.

Контактно транзисторная схема зажигания

Эта конструкция позволяет формировать искру с большой длительностью, поэтому процесс сгорания топлива в автомобиле становится оптимальным.

Схема зажигания состоит из триггера Шмитта на транзисторах V1 и V2, развязывающих усилителей V3, V4 и электронного транзисторного ключа V5, коммутирующего ток в первичной обмотке катушки зажигания.

Триггер Шмитта формирует коммутирующие импульсы с крутым фронтом и спадом при замыкании или размыкании контактов прерывателя. Поэтому в первичной обмотке катушки зажигания увеличивается скорость прерывания тока и возрастает амплитуда высоковольтного напряжения на выходе вторичной обмотки.

В результате улучшаются условия формирования искры в свече, что способствует процессу улучшения запуска автомобильного двигателя и более полному сгоранию горючей смеси.

Транзисторы VI, V2, V3 — КТ312В, V4 — КТ608, V5 — КТ809А. Емкость С2 — с рабочим напряжением не ниже 400 В. Катушка типа Б 115, применяемая в легковых автомобилях.

Печатную плату изготовил в соответствии с рисунком по .

В этой системе энергия, расходуемая на искрообразование, копится в магнитном поле катушки зажигания. Система может быть смонтирована на любом карбюраторном двигателе с бортовой сетью автомобиля +12 В. Устройство состоит из транзисторного коммутатора, построеного на мощном германиевом транзисторе, стабилитроне, резисторах R1 и R2, отдельных добавочных сопротивлениях R3 и R4, двухобмоточной катушки зажигания и контактов прерывателя.

Мощный германивый транзистор Т1 работает в ключевом режиме с нагрузкой в коллекторной цепи, в роли которой служит первичная обмотка катушки зажигания. При включенном замке зажигания и разомкнутых контактах прерывателя транзистор заперт, так как ток в базовой цепи стремится нулю.

Во время замыкания контактов прерывателя в базовой цепи германиевого транзистора начинает течь ток величиной 0,5- 0,7 А, задаваемый сопротивлением R1, R2. Когда транзистор полностью отпирается, внутреннее сопротивление его резко снижается, и по первичной цепи катушки течет ток, нарастающий по экспоненте. Процесс нарастания тока практически не отличается от аналогичного процесса классической системы зажигания.

При очередном размыкании контактов прерывателя движение базового тока притормаживается, и транзистор закрывается, что приводит к резкому падению номинала тока через первичную обмотку. Во вторичной обмотке катушки зажигания генерируется высокое напряжение U 2макс которое через распределитель поступает на свечу зажигания. Затем процесс повторяется.

параллельно с появлением высокого напряжения на вторичной обмотке в первичной обмотке катушки индуцируется ЭДС самоиндукции, которая ограничивается стабилитроном.

Сопротивление R1 исключает обрыв базовой цепи транзистора при разомкнутых контактах прерывателя. Сопротивление R4 в эмиттерной цепь является токовым элементом обратной связи, снижая время переключения и улучшающим ТКС транзистора Т1. Сопротивление R3 (совместно с R4) ограничивает ток протекающий через первичную цепь катушки зажигания.

Сейчас почти все владельцы классик устанавливают на своё авто бесконтактное электронное зажигание (БСЗ). И это легко объяснить. БСЗ имеет очевидные и проверенные на практике преимущества, такие как простота и легкость настройки. Если Вам уже порядком надоело, что контактная пара и по определенным причинам, очень часто не срабатывает или же вообще выходит из строя. Вы еще не решили стоит ли покупать комплект бесконтактного зажигания, то тогда эта статья поможет Вам совершить правильный выбор.

Теперь, перейдем к самому главному — выбор и установка БСЗ на ваш автомобиль.

Думаю, что лучше всего остановить свой выбор на комплекте бесконтактного зажигания, произведенного в России, а именно город Старый Оскол.

В коробке находится катушка, коммутатор, жгут проводов и распределитель.

Этот комплект признан одним из самых лучших. Правда и цена, заоблачная, так же, перед покупкой нужно посмотреть, какой блок двигателя у Вас, так как распределители отличаются длинной вала.

Для установки нам понадобится сверло, дрель и пара саморезов, они пригодятся для установки катушки в моторном отсеке, на некоторых двигателях предусмотрено стандартное место для крепежа, а вот коммутатор придется прикрепить самостоятельно. Так же пригодится рожковый ключ на «13», торцовые или накидные ключи на «8» и «10», а так же ключ на «38».

Замена бесконтактного электронного зажигания

  1. Ключом на 38 откручиваем гайку храповика пока не совпадут мети на шкиве коленвала и крышки двигателя, то есть нужно установить двигатель на метку «ВМТ».

Также при установке БСЗ новички в этом деле могут делать элементарные ошибки, такие как, например: подключения катушки с перепутанные местами провода. По этому перед запуском все проверьте.

Если после установки электронного зажигания ваш автомобиль не заводится, а такие ситуации бывают довольно часто, проверь все от начала и до конца, ведь могли перепутать как вв провода к цилиндрам, так и неправильно установить привод трамблера.

Как выставить угол опережения зажигания

Система зажигания в автомобиле отличается своей высокой степенью чувствительности, и достаточно единожды снять распределитель зажигания (трамблер), чтобы «слетели» все заводские настройки. После такого «вмешательства» двигатель начинает работать некорректно, а в ряде случаев может и вовсе перестать заводиться. Для многих автовладельцев вопрос как правильно выставить зажигание является крайне актуальным, поскольку каждый раз отгонять машину на сервис не совсем удобно. Тем более, что сделать это можно вполне самостоятельно, достаточно один раз понять правильный алгоритм действий. Ведь, например, некорректно выставленный угол опережения зажигания может привести к сбоям в функционировании системы зажигания и, как следствие, таким проблемам как: потеря оборотов, образование «выстрелов» при работе двигателя. Такая ситуация часто наблюдается после работы неопытного «мастера» в сервисе, или самостоятельных попытках выставить зажигание.

система зажигания

Важно! При снятом распределителе зажигания, ни в коем случае не допустимо прокручивать коленчатый вал – это может привести к полному «расстройству» настроек системы зажигания.

Трамблер – основной элемент системы зажигания

трамблер

Трамблер, или распределитель зажигания, на каждую конкретную модель автомобиля устанавливается по-своему. Наибольшей простотой монтажа отличаются такие марки как «Москвич», ГАЗ и ЗАЗ. Чтобы поставить его правильно, необходимо совместить метки в виде полумесяцев на хвостовике трамблера и на приводе в блоке двигателя. Большинство иномарок также имеют на распределителе зажигания метки, позволяющие правильно установить его и избежать, тем самым, сбоев в работе системы зажигания.

Установка трамблера на ВАЗ ведется по 1-му цилиндру. Для корректной работы системы зажигания цилиндр должен занимать позицию, предшествующую его верхней мертвой точке (ВМТ), когда наступает стадия сжатия. Алгоритм правильного выполнения этих работ выглядит следующим образом:

  • на холодном моторе извлекается свеча, принадлежащая цилиндру;
  • получившееся отверстие максимально плотно закрывается (удобно использовать винную пробку);
  • поворачивая коленвал (рукой или ключом х36) необходимо выбрать момент сжатия, когда воздух начинает вытеснять пробку из отверстия;
  • продолжая вращать маховик нужно получить полное совпадение метки на шкиве с меткой, присутствующей на корпусе ГРМ – полученное опережение станет равняться 5-ти градусам, что подходит для 92-го и 95-го бензина.

В дальнейшем, для исключения вопроса «как выставить зажигание», следует верно установить сам трамблер. Для этого можно провести «виртуальную» черту через защелки его крышки и осью двигателя. Они обязаны быть строго параллельны, а ротор бегунка смотреть в сторону контакта самого цилиндра на крышке трамблера. После всех манипуляций, свеча возвращается на место – двигатель должен запускаться четко и без промедлений. Достаточно наглядно демонстрирует процесс установки трамблера видеоролик:

Выставляем правильный угол опережения

фиксирующая гайка

Для большинства автолюбителей, особенно начинающих, остается непонятным вопрос не только как выставить угол опережения зажигания, но и для чего это нужно. Это нужно чтобы топливная смесь в цилиндрах сгорала полностью. Известно, что она прогорает не сразу, соответственно, воспламенять ее важно чуть раньше того момента, когда поршень попадает в свою ВМТ. Для этого момент искрообразования и должен быть скорректирован с максимальной точностью. Наибольшую популярность обрели три метода – на слух, при помощи лампочки и «по искре».

  • Регулировка на слух. Данный метод отличается достаточной простотой, но в большей степени подходит для опытных автовладельцев. Весь процесс настройки ведется на теплом заведенном моторе. Для начала следует немного открутить гайку, удерживающую трамблер, и начать медленно вращать его. Найдя позицию, при которой обороты у авто будут наибольшими, необходимо «погазовать», быстро нажимая на педаль газа. При правильно найденном положении трамблера нажатие на педаль будет сопровождаться быстрым набором оборотов без перебоев или «выстрелов». После этого можно заглушить двигатель, повернуть сам трамблера на 1-2 градуса по часовой стрелке (это позволит избежать преждевременного зажигания), и закутить фиксирующую гайку;

Важно! Перед тем, как правильно выставить угол опережения зажигания следует убедиться в том, что в бак залито качественное горючее, в противном случае процедуру регулировки зажигания скорее всего придется повторять.

  • настройка опережения по искре. При таком способе поршень 1-го цилиндра должен занимать верхнее положение – для этого необходимо вращать коленвал пока метка на шкиве не совпадет с 1-ой отметкой на блоке ГРМ. При этом раздатчик необходимо расположить так, чтобы он «смотрел» в сторону контакта провода цилиндра (может потребоваться совершить еще один цикл вращения). Также можно настроить зажигание, извлёкши свечу из того же цилиндра. Из распределителя извлекается основной провод (высоковольтный), и его контакт фиксируется в 5 мм от массы авто. После ослабления крепежной гайки на распределителе включается зажигание. Посредством медленного поворота трамблера осуществляется поиск момента образования искры. После этого, путем крайне медленного вращения против часовой стрелки, определяется, когда она исчезает, и распределитель фиксируется в этой позиции;
  • настройка зажигания по лампочке. После фиксации поршня 1-го цилиндра в позицию, предваряющую ВМТ (примерно по средней метке), первый провод автолампочки замыкается на массу, а второй соединяется с проводом, который идет от катушки к распределителю. После включения зажигания необходимо поймать момент загорания лампочки (путем поворота трамблера) и зафиксировать это положение. Простоту и доступность этой методики легко понять, посмотрев данный ролик:

Некоторые особенности самостоятельной регулировки зажигания

 зажигание

Все системы зажигания делятся на два типа – электронное и механическое, и регулировка каждого из них имеет некоторые особенности, несмотря на то, что в обоих случаях выполняется вращением трамблера. Так, механический распределитель генерирует искру при размыкании контактов. Поэтому прежде, чем начинать процедуру настройки опережения необходимо проверить и отрегулировать зазор межу контактами. Эта процедура не отличается какой-либо сложностью, и выполняется достаточно быстро:

  • коленвал поворачивается до тех пор, пока зазор между контактами не достигнет своего максимума;
  • специальным щупом проверяется зазор и, при необходимости, поворотами специальных винтов вносятся коррективы;
  • после повторных, заключительных замеров крепко заворачиваются крепежные винты.

В электронной системе отсутствуют какие-либо, а за искрообразование отвечают определенные датчики и коммутаторы. Искра в такой системе имеет куда большие размеры, нежели в механической, что благотворно сказывается на числе оборотов, характере пуска и процессе воспламенения топливной смеси. Для оптимального угла электронного зажигания можно изменять расположение корпуса распределителя (не более 1,5 мм за один раз) и проверка результата на ходу. Таким образом, можно подобрать оптимальное положение трамблера и добиться идеального зажигания.

Источник http://sjracing.ru/avto/elektronnoe-zazhiganie-svoimi-rukami-dlya-avtomobilya-elektrosxema-elektronnogo-zazhiganiya-svoimi-rukami-prostaya-sxema-elektronnogo-zazhiganiya-chto-daet-ustanovka-bsz-na-semerku.html

Источник http://tdiesel.ru/elektronnaya-kontaktnaya-sistema-zazhiganie-svoimi-rukami-elektronnoe.html

Источник http://mashintop.ru/articles.php?id=2141

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: