Микропроцессорная система зажигания для карбюраторных двигателей. Микропроцессорное зажигание вместо трамблёра

Содержание

Микропроцессорное зажигание на классику своими руками. Микропроцессорная система зажигания (мпсз) на классику

Одной из особенностей бензинового ДВС является использование специальной системы, предназначенной для воспламенения паров бензина в цилиндрах мотора. За всю историю развития автомобиля зажигание реализовывалось различными способами, оно развивалось от простейших схем до сложных электронных устройств. И как один из возможных вариантов построения такой системы была создана МПСЗ.

Немного истории

Известны такие основные системы, обеспечивающие воспламенение паров бензина в ДВС автомобиля:

  • контактная;
  • бесконтактная;
  • микропроцессорная система зажигания (МПСЗ).
  1. Контактная. Исторически это была первая попытка, она оказалась достаточно успешной и проработала много лет. Схема такой системы приведена ниже
    Принцип работы устройства прост – размыкание контактов прерывателя разрывает первичную цепь, из-за чего во вторичной обмотке бобины наводится высокое напряжение, которое распределителем направляется на одну из свечей зажигания. Это было простое, отработанное изделие, конечно со своими недостатками, которые устранялись по мере развития техники и элементной базы.
  2. Бесконтактная. Принцип работы в основном схож с предыдущим, но изделие является более надежным. В нем контактный механический прерыватель заменен электронными устройствами – коммутатором и датчиком. Схема такого изделия показана на рисунке
  3. Микропроцессорная система, не содержащая механических узлов и построенная целиком на электронных компонентах.
    Принцип работы так же остался неизменным, функциональная схема такого устройства показана на рисунке.

Микропроцессорная система зажигания на классику

Понятно, что контактная система, устанавливаемая в том числе и на вазовскую классику, еще находится в эксплуатации и не может конкурировать с МПСЗ. Но тут возникает очень интересный момент.

Принцип самого искрообразования в целом остался неизменным. Понятно, что искра, генерированная МПСЗ, будет мощнее и лучше, но главным ее достоинством является возможность управления непосредственно процессом искрообразования, путем изменения угла опережения зажигания (УОЗ).

Здесь нужно сделать небольшое пояснение – скорость движения автомобиля влияет на момент появления искры в цилиндрах. Теоретически это происходит при нахождении поршня в ВМТ. Однако при движении на высокой скорости, из-за конечных параметров горения смеси, искрообразование должно начинаться немного раньше, чем поршень дойдет до ВМТ.

Регулировка УОЗ позволяет сформировать искру в нужный момент, благодаря чему мотор выдает максимальную мощность, при этом уменьшается расход бензина и улучшается тепловой режим его работы. Вот эту функцию берет на себя МПСЗ, микропроцессорная система зажигания на классику.

Фактически, она дает вторую жизнь старому автомобилю с карбюратором – его возможности конечно будут уступать современному автомобилю, но МПСЗ позволит значительно улучшить работу контактной системы с мотором и карбюратором.

Фактически трамблер выполняет только функцию распределения напряжения по свечам, а управление зажиганием осуществляет МПСЗ. Она представляет собой электронное устройство, выполненное на микроконтроллере, которое в зависимости от показания датчиков (Холла или положения коленчатого вала) выставляет нужный УОЗ.

Могут быть и другие подходы к реализации подобного управления, например по температуре двигателя или разрежению во впускном коллекторе . Но независимо от этого МПСЗ продается в виде комплекта, подготовленного для установки на конкретный автомобиль, содержащего нужные жгуты.

При всех изменениях, затронувших систему зажигания автомобиля, принцип ее работы в целом остался неизменным – формирование высоковольтного напряжения осуществляется прерыванием протекания постоянного тока в первичной обмотке бобины. За все время существования автомобиля создана не одна схема, позволяющая значительно улучшить процесс искрообразования, но именно МПСЗ совмещает старую систему зажигания, установленную на многие машины, и микропроцессорное управление, продлевая жизнь автомобилю.

Не секрет, что для авто, работающего на бензиновом ДВС, требуется специально созданная система. Которая служит для воспламенения бензиновых паров в цилиндрах мотора. В разные годы автомобильное зажигание было разным и все время дорабатывалось. Для этого применялись всевозможные схемы. Так вот одной из современных таких схем и стала МПСЗ.

Основные известные системы

Таких систем согласно истории существует и известно всего три:

1. Контактная система.

2. Бесконтактная система.

3. Микропроцессорная система зажигания.

Любое авто, безусловно нуждается в полноценной системе зажигания. На сегодня известны как классические системы, так и современные инжекторные. Безусловно классические варианты во многом проигрывают современным их аналогам. Для автовладельцев разница стала очевидна во многом: по-другому работает двигатель, изменился объем расходования топлива и общий функционал машины.

Именно из-за разницы в качестве систем, владельцы авто с карбюраторным мотором, стали думать как же подстроить новые блоки зажигания под свою классическую железную подружку.

Что же предприняли изготовители в помощь автовладельцам?

Изначально в продажу поступили микропроцессорные варианты зажигания, где был установлен доработанный трамблер, настроенный под совместную работу с датчиком холла и управлением машиной классической марки. И все вроде бы стало неплохо, если не считать что для классики работа распределителя, по-прежнему оставалась проблемной.

Кроме всего прочего в самом начале было понятно, что для электронной системы характеристики уоз для нагретого либо ненагретого мотора явно отличаются. Потому как при настройке уоз на холодную с дальнейшим прогревом двигателя, возникают неизбежные детонации.

Из-за всех неудобных моментов, изготовители систем, решили предпринять следующую доработку. Им пришлось сделать микропроцессорное зажигание для классических авто практически идентичным инжекторному варианту, оставив без изменения лишь управление системы впрыска.

Что это дало?

После всех нововведений, появились следующие преимущества:

1. Искра зажигания стала намного стабильнее.

2. Дребезжание контактов полностью исчезло.

3. Функциональность мотора на холостом ходу почти не уступает инжекторному.

4. Угол опережения зажигания стал более оптимизированным и не допускает начала зоны детонации. Тут учитываются и частоты.

5. Появилась экономичность расхода топлива, в среднем на 10 км, расход составил 6 литров.

Как устроена МПСЗ?

Микропроцессорная бесконтактная система зажигания, не имеет в своей конструкции неких узлов механического типа и выстроена исключительно на компонентах электронного типа. Самым главным компонентом микропроцессорной системы является микропроцессор, который собственно полностью выполняет функцию главного мозга.

В схему микропроцессорной системы, входят следующие компоненты: АКБ, коммутатор, накопительно- распределительная система, блок управления электронного типа, ряд различных функциональных датчиков. А также датчик измерения температуры мотора и датчик напряжения аккумулятора, преобразующий компонент; компонент дроссельной заслонки, преобразователь цифрового формата, катушки, управляющий блок, память, свечи. Конечно от марки и модели устройства компоненты могут быть неодинаковыми.

Что такое ЭБУ в микропроцессерной системе зажигания?

ЭБУ — это микропроцессорный блок управления мотором авто. Также не всем наверняка известно, что микропроцессорный блок управления еще по-другому называют контроллером. Он является важным элементом, который содержит микропроцессорная система зажигания.

Данный контролер занимается тем, что своевременно принимает поступающие данные от различных датчиков. Затем обрабатывает их по особым алгоритмам и отдает команды всем важным устройствам системы. Также эбу ведет непрерывный обмен данными со всеми важными системами авто.

Как настроить систему?

Несмотря на разнообразные и многочисленные страшилки от мастеров сто, настроить микропроцессорное зажигание можно и самостоятельно. Правда настройка потребует значительного времени, нежели особенных знаний.

При изготовлении такого зажигания производители зашивают в микропроцессорный блок усредненные данные по мотору в целом в единую системную таблицу. Однако чтобы выполнить самостоятельную настройку зажигания, нужно подстроить процессор под конкретно ваш мотор, выбрать нужное положение и определить собственные данные. На которых собственно и будет построена ваша микропроцессорная система зажигания в машине.

Итак, для работы нам понадобиться компьютер или ноутбук с кабелем сервисной программулины. Считываем данные датчиков, затем подбираем нужные параметры системы и дальше придерживаемся инструкции в работе.

Когда данные датчика считаны верно и все элементы, предусматривающие микропроцессорное зажигание работают в нормальном режиме, дополнительного вмешательства в работу зажигания не потребуется. По всем теоретическим параметрам которые дают производители микропроцессорное зажигание нормально функционирует без ремонта до 10 лет.

Тонкости работы устройства

В чем же уникальность или тонкость работы современного зажигания? Самой важной тонкостью в работе, которая предусмотрена в МПСЗ, является наличие угла опережения силового узла. Работа которого полностью зависит от параметров давления воздуха в системе впуска и непосредственно вращения коленчатого вала.

Когда вся микропроцессорная система установлена верно, управление автомобилем становится намного комфортнее и мягче. Более того современный монтаж зажигания в форму микропроцессорного, дает возможность взять из мотора машины максимум не утратив при этом ресурс.

В чем принцип действия?

Принцип функционала состоит в том, что в момент работы машины начинают меняться частоты вращения коленвала. Которые тут же контролируются датчиками распредвала и вращения коленчатого вала. На основе зафиксированных параметров идет команда на эбу. И тут же принимается нужный угол опережения.

Более того, когда изменяется нагрузка на силовой узел при движении машины, то выбор угла опережения и фиксация таких изменений полностью ложатся на датчик отслеживающий расход воздуха во время работы. Другими словами системой как бы управляет целый комплекс узлов. И весь процесс выполняется четко как по часам.

Учитывается все: момент и угол опережения, вращения, уровень температуры, частоты оборотов, положение важных узлов, заслонки, функционал цилиндров, наличие своевременной искры и так далее.

Микропроцессорная функция зажигания, призвана также и снижать ненужное напряжение в момент работы всех систем авто.

Пользуясь современным типом систем и данным зажиганием в целом, автовладелец получает максимум комфорта при минимуме затрат!

Преимущества, которые не стоит игнорировать!

Наряду с оптимизацией своего авто, владелец при наличии нового зажигания, получает дополнительно еще и ряд особенных преимуществ.

1. Реальную возможность настроить собственный мотор под любое привлекательное топливо для машины.

2. При наличии авто с ГБО, прирост тяги и общей мощности машины.

3. Полное отсутствие детонаций, стуков при наборе оборотов скорости, причем даже тогда когда в наличии залито далеко не идеальное топливо.

4. У машин бензинового типа, топливо перегорает значительно быстрее, что на порядок снижает расход последнего.

5. В холодный период машина гораздо быстрее и проще заводится.

6. За электронной системой не нужен тотальный контроль со стороны владельца, поскольку контроль возлагается на встроенный дисплей.

7. Машину можно переоборудовать и добавить дополнительный тумблер для легкости переключения на тот или иной вид топлива.

8. На новом типе зажигания владелец получает новые опции, важные параметры держатся на конкретно выставленном уровне.

9. Стартер отключается самостоятельно после запуска мотора.

10. Можно управлять вентилируемостью системы охлаждения.

Выводы

МПСЗ — это настоящая современная альтернатива иным специальным устройствам с подобной работой. Удобство электронным вариантом зажигания, предполагает простоту любых настроек в авто, высокую точность и надежность функционала. Поэтому стоит выбирать именно такое зажигание, чтобы получить все вышеперечисленные преимущества и оценить истинный комфорт!

С момента появления инжекторных систем впрыска с электронными компонентами управления стало понятно, насколько обычные классические системы проигрывают микропроцессорной системе зажигания. Разница в работе мотора и особенно в расходе топлива, была очевидной и впечатляющей. Поэтому подавляющее большинство владельцев классик с карбюраторным мотором самыми разнообразными ухищрениями стремились адаптировать новые микропроцессорные блоки зажигания МПСЗ на своих ласточках.

На классику нужны микропроцессорные «навороты»

Сначала появились неполные аналоги микропроцессорной системы зажигания на классику, в которой был переделан трамблер под работу с датчиком Холла и модифицирована система управления. Но умные автолюбители знают, что в микропроцессорная система зажигания для карбюраторных двигателей проблемным звеном оставался распределитель или трамблер по-русски.

Мало того в неплохой идее электронного зажигания заложен принципиальный недостаток — характеристика углов опережения зажигания для холодного двигателя и прогретого в корне отличается. При настройке углов опережения на трамблере для холодного мотора, после его прогрева обязательно появится детонация.

Поэтому разработчикам микропроцессорных блоков для классики пришлось пойти далее и доработать, превратив систему зажигания для классики, практически в полный аналог инжекторного варианта, за исключением управлением системы впрыска.

Совет! Насколько новая система микропроцессорного зажигания приспособлена под реалии работы на классике, поинтересуйтесь у владельцев «чудо-электроники», отъездивших минимум сезон.

Что дает такая микропроцессорная система зажигания:

  • отсутствие в схеме распределителя зажигания благотворно влияет на стабильность искры и отсутствие «дребезга контактов»;
  • стабильность холостого хода практически не уступает инжекторному двигателю;
  • главное преимущество микропроцессорной системы заключается в «умном» выборе угла опережения зажигания по параметрам мотора, что позволяет работать на оптимальных углах и не вылезать в зону детонации.
  • экономия топлива на обычном, неубитом жигулевском «шестерочном» моторе на круг снижается в среднем с 10 литров бензина до 6-7.

К сведению! Чудесное уменьшение расхода бензина возможно только на абсолютно исправном и отрегулированном карбюраторе, в противном случае электроника только усугубит ситуацию с расходом.

Как работает микропроцессорная система зажигания

Приятным открытием был тот факт, что новую схему микропроцессорной системы вполне реально собрать своими руками по схеме МПСЗ из готовых компонентов. Ну и конечно, чтобы настроить микропроцессорный блок нужен компьютер, шнур СОМ-СОМ или СОМ-USB и пара сервисных программок, в том числе вариант прошивки таблицы углов опережения момента инициации воспламенения.

К сведению! Это наиболее важный этап и отделаться использованием стандартного табличного набора значений не удастся. Например, прошивки МПСЗ для двигателей УЗАМ очень отличаются от ВАЗ, тем более ГАЗ.

В отличие от старых версий, в которых момент формирования высоковольтного свечного импульса определялся распределителем зажигания, в новой микропроцессорной схеме команда на катушку подается на основании обработки сведений от нескольких датчиков:

  • положения коленвала, зачастую требуется покупка новой крышки с приливом под датчик, а при установке немного повозиться из-за малости места для работ;
  • сенсор абсолютного давления выдает на микропроцессорный блок степень разрежения во впускном коллекторе, что позволяет косвенно электронике делать поправку на степень загруженности мотора;
  • датчик температуры ОЖ — охлаждающей жидкости;
  • датчик детонации крепиться согласно инструкции на срединной части блока под специальный болт с гайкой;
  • датчик синхронизации.

Кроме датчиков потребуется сам микропроцессорный блок-коммутатор, новую катушку зажигания на два контакта и жгут проводов с фишками.

Возможность приобретения сборки по частям дает экономию, но не гарантирует стабильной работы

Что можно поставить на классику из существующих МПСЗ

Среди наиболее известных микропроцессорных, чаще всего используют МПСЗ Мaya, Secu 3 или Микас. Собрать любую не представляет труда, при наличии навыков правильно видеть и читать инструкцию со схемой, и выполнять последовательность действий монтажа.

При выборе микропроцессорной системы не стоит пугаться навороченной схемы, которой любят козырять продавцы товара, предлагая услуги знакомого электрика для «гарантированно качественного монтажа за копейки». Все компоненты можно установить на классику своими руками.

При выборе обратите внимание на качество самого блока. Хорошим тоном считается, если нет короблений пластмассовых частей заусениц, микротрещин. Вторым показателем можно привести наличие большой рассеивающей поверхности в виде алюминиевой основы. Микропроцессор остается самой капризной частью и к выбору места под капотом или в салоне необходимо относиться со всей серьезностью.

Катушки зажигания можно выделить в отдельный блок, как вариант можно закрепить непосредственно рядом со свечами на крышке головки.

Настройка МПСЗ

Настройка работы микропроцессорной системы по сути требует не сколько знаний, сколько терпения. Производитель зашивает в микропроцессорном блоке среднепотолочные данные по мотору в одной таблице. Они позволяют запустить двигатель и выполнить все управляющие опции по датчикам и кривым углов.

Нам предстоит обучить процессор под свой мотор и получить свои таблицы, на основании которых работа зажигания будет максимально оптимизирована.

Подключаем ноутбук через кабель и с помощью предустановленной сервисной программулины, пытаемся рассмотреть показания датчиков. Выбираем параметры системы и далее действуем согласно инструкции.

В процесс езды в памяти процессора накапливается определенный массив данных по кривым УОЗ. Обычно рекомендуют подключить комп к МПЗС повторно и выполнить коррекцию коэффициентов по самой оптимальной кривой.

Если все компоненты системы МПЗ надлежащего качества, монтаж микропроцессорной системы выполнен по правилам и вам не зальют на мойке водой сам электронный блок системы, дальнейших вмешательств в работу МПЗС не потребуется. Теоретически такая система зажигания должна проработать до десятка лет.

МПСЗ. Микропроцессорная система зажигания на классику на следующем видео:

Сегодня в современных автомобилях широко применяется микропроцессорная система зажигания, которая полностью исключает механические приспособления. Она используется для автомобилей с инжекторным двигателем. Можно сказать, что это – классика, которая изначально производилась еще тридцать лет назад для “ВАЗа”. Как тогда, так и сейчас, ключевым элементом микропроцессорной системы является микропроцессор, который выполняет функции главного мозга. Основным преимуществом такой системы считают возможность регулировать углы опережения зажигания (далее УОЗ) посредством многих параметров. Также стоит отметить, что нет необходимости ее настраивать в процессе эксплуатации.

Структурная схема МПСЗ состоит из:

  • Датчики входные (датчик температуры и давления коллектора, датчик температуры мотора и напряжения аккумулятора);
  • Преобразователи;
  • Показатель дроссельной заслонки;
  • Преобразователь аналого-цифровой;
  • Ключевой элемент – микропроцессорный блок управления (мозговой центр);
  • Память оперативная;
  • Память постоянная;
  • Катушки с двумя выходами;
  • Свечи;
  • Коммутаторы.

Зажигание предназначено для воспламенения воздушно-топливной смеси в цилиндрах. Микропроцессорное зажигание имеет способность формировать зависимость УОЗ. Такое явление происходит только в карбюраторных бензиновых двигателях. Формирование зависимости угла опережения происходит в зависимости от того, с какой частотой вращается коленвал.

Причины, ставшие толчком создания данной системы следующие:

  • невозможность исполнения нормальных и действующих зависимостей УОЗ регуляторов датчиков-распределителей, которые устанавливаются на карбюраторе двигателя;
  • первоначальная не состыковка характеристик на этапе сборочного конвейера;
  • значительное изменение характеристик на этапе их эксплуатации.

Использование для автомобиля МПСЗ – это подарок для вашего автомобиля.

Автомобиль, имеющий микропроцессорное зажигание, обладает большими преимуществами над автомобилем, в котором контактное или бесконтактное. Работа машины становится динамичной и приемистой.

Как работает

Бортовой компьютер автомобиля объединяет в себе все функции управления, которые объединяют микропроцессорное зажигание. Различные универсальные датчики выполняют функции входных сигналов. Кварцевый резонатор, который имеет микропроцессорный блок управления, прерывает цепь низкого напряжения, в зависимости от положения угла опережения, для каждого цилиндра.

Во время работы мотора авто на главный блок управления поступает информация о нагрузке, температуре, детонации, напряжения батареи, информация о положении заслонки дроссельной, а также о положении коленчатого вала и частоте его вращения. Вся информация, которая подается от датчиков, поступает к преобразователю, который в свою очередь преобразует ее в электрические сигналы. Преобразователь должен передавать только сигналы в цифровой форме, так как микропроцессорный блок управления обрабатывает только числа.

Но, некоторые сигналы не нуждаются в преобразовании, так как поступают в виде импульсов (сигналы о положении и частоте вращения коленвала). После того, как блок управления получает данные от преобразователя, микропроцессор определяет УОЗ относительно карты углов, которая хранится в памяти.

Микропроцессорное зажигание обладает огромным преимуществом, так как его работа обеспечивает правильное управление зажиганием в зависимости от положения и частоты вращения коленвала, заслонки дроссельной, температуры в моторе и т.д. Так как микропроцессорная система зажигания не обладает механическим распределителем (трамблером), поэтому есть возможность обеспечить высокую энергию искры.

Чем лучше трамблера?

Чтобы понять, чем МПC лучше распределителя (трамблера), я приведу несколько примеров негативной работы последнего элемента. Первое – это система автомобиля работает нестабильно из-за плохой работы самого трамблера. Второе – система трамблер состоит из движущихся частей. Подвижные элементы иногда выходят из строя, а это сказывается на всей работе системы автомобиля. Часто причинами поломки подвижных элементов и контактов трамблера является электрическая эрозия и сгорание. От этого понижается его надежность и продуктивность. Третье – заложенная конструктивно неспособность трамблера правильно реагировать на угол опережения зажигания относительно показателей оборота движка машины.

Что же касается МПСЗ, то эта система не только способна получать и обрабатывать данные об угле опережения зажигания, но и оптимально производить регулировку. Чтобы произвести регулировку системе нужно получить показания двух параметров: температуры ОУЗ и датчика детонации. Трамблер не в силах воспринимать такие показатели. Помимо этого качества, микропроцессорный блок устраняет и не допускает много других недочетов трамблера, в том числе и тех, которые указанные выше.

Если вы решили поставить на свою машину МПСЗ, то вы автоматически обладаете рядом преимуществ. Такими являются: уменьшение расхода топлива, улучшение и повышение динамических показателей авто, создаются плавные переходы от одной передачи к другой, при этом мощность остается та же при низких оборотах двигателя. Так что желаю вам успехов в установке и эксплуатации.

Видео “Микропроцессорная система зажигания”

На записи показано что такое МСЗ и как ее установить на автомобиль.

Вот надумал делать МПСЗ, о всех своих успехах и поражен я буду писать здесь.

Почему именно её — проект открытый, хорошая документация, относительная простота.

изначально был выбран сложный путь, с изготовлением печатной платы самостоятельно, но ничего не получилось поэтому пришлось отказаться от этого пути и купить за 160 грн. готовую, покупал у разработчика.

Дальше ее нужно спаять, собственно сам процес пайки я не описываю, так как для специалиста это просто и очевидно, для не специалиста это достаточно сложно, поэтому если паяльником не владеете то лучше купить уже спаяную, либо попросить того кто это умеет делать.

Прошивается в принципе достаточно стандартно, и что бы не изобретать велосипед скопипастю, в принципе делал все так как написано:

Q: Как и чем прошить блок Secu-3?

A: Под прошивкой блока понимается запись программы во флеш память микроконтроллера. Эта программа, будучи однажды записанной, помимо своих основных функций умеет так же сама себя прошивать. Эту функцию выполняет т.н. загрузчик или bootloader размер которого составляет 512 байт и который расположен в самом конце флеш памяти. Однако для того чтобы воспользоваться возможностями загрузчика его туда нужно однажды записать. Поэтому:

Сервисный режим:

После сборки устройства его необходимо единожды сконфигурировать и прошить через сервисный разъём, обозначенный на схеме как ISP Adapter. Обе операции рекомендуется делать при помощи AVReAl . При данных операциях естественно необходимо питание блока от +12В.

Параметры запуска avreal.exe следующие.

Установка фьюзов (конфигурирование):

avreal32.exe -as -p1 +atmega16 -o16MHZ -w -fBODLEVEL=ON,BODEN=ON,SUT=01,CKSEL=F,CKOPT=ON,EESAVE=ON,BOOTRST=ON,JTAGEN=OFF,BOOTSZ=2

Прошивка:

avreal32.exe -as -p1 +atmega16 -o16MHZ -e -w secu-3_app.a90

Пример установки FUSE-битов в PonyProg:

Архив с батниками для патчинга контрольной суммы, установки фьюзов и прошивки

Обращаю особое внимание что в сервисном режиме под файлом прошивки понимается файл в шестнадцатеричном (хексовом) формате с расширением *.a90 или *.hex, размером > 30кб и содержащий символы только шестнадцатеричной системы 0-9ABCDEF . Если всё сделано правильно, то при следующей перезагрузке блок один раз моргнет светодиодом, подключенным через резистор между выводом 16 (лампа СЕ) и землёй. На этом сервисный режим можно считать законченным и все дальнейшие изменения программы можно делать в пользовательском режиме.

Пользовательский режим:

Для пользовательского режима необходим менеджер (управляющая программа для РС) и рабочий COM порт, соединенный обычным удлинителем COM порта с блоком SECU. Если же менеджер при запуске ругается на невозможность открытия COM порта, то необходимо настроить правильный номер порта в менеджере либо искать неполадки в операционной системе. Обращаю особое внимание что в пользовательском режиме под файлом прошивки понимается файл в *.bin формате, содержащий любые символы но размер этого файла только такой: 16384 байт. Для конвертации прошивки из хексового формата в бинарный необходимо воспользоваться утилитой hex2bin.exe . Обратная конвертация не понадобится. Пользовательский режим можно разделить на режим загрузчика и рабочий режимы:

Режим загрузчика: Вход в этот режим происходит при подаче питания с установленной перемычкой bootloader. При этом основная часть программы не работает, работает только загрузчик, который способен прочитать или записать основную программу во флеш память микроконтроллера по командам из менеджера. Для этого в менеджере на вкладке «Данные прошивки» необходимо установить чекбокс Boot Loader и по ПРАВОЙ кнопке мыши выбрать желаемую операцию. Данный режим нужно использовать в том случае если повреждена основная микропрограмма, если же всё работает, то эти операции можно делать и в рабочем режиме, естественно при остановленом двигателе.

Рабочий режим: перемычка bootloader снята, статус «connected», активна вкладка «Параметры и монитор». На вкладке «Данные прошивки» доступны операции по ПРАВОЙ кнопке мыши.

После прошивки необходимо откалибровать АЦП, как делается:

Смотрим что показывает программа.

Меряем что на самом деле.

потом повторяем но нужны разные значения.

после чего строим систему уравнений с двумя неизвестными, и решаем его, описывать как считаем не буду, там математика 8й класс школы, но если кто захочет я помогу посчитать.

где а,b — то что показывает программа

m,n то что должно быть на самом деле.

Вносим в прошивку и сохраняем.

В принципе таким же образом можно калибровать и датчики.

Q: Как правильно выполнить калибровку ДАД?

А: На вкладке «Функции» необходимо подобрать значения параметров «Смещение» и «Наклон» таким образом, чтобы при неработающем двигателе прибор «Абсолютное давление» показывал бы текущее атмосферное давление. Как правило это значение составляет 99-100кПа. Таблица перевода давления в различные единицы измерения . Смысл параметра «Смещение» описан на рисунке. Параметр «Наклон» определяет на сколько кило-Паскалей должно измениться давление, чтобы напряжение на выходе датчика изменилось на 1 Вольт.

Настройки для ДАД МРХ4100 : Наклон кривой — 18.51 кПа/B, смещение кривой — 0.73В.

Пояснение:

1. Наклон указан в даташите — 54mV / kPa. Coответственно 1 / 0.054 = 18.51 (кПа/В).

2. В даташите указано что при 20кПа, датчик выдает приблизительно 0.3B. Значит при 18.51 кПа датчик должен выдавать (теоретически): 0.3 / (20 / 18.51) = 0.277B. Смещение (в менеджере) должно быть таким, чтобы при давлении 18.51 кПа мы имели 1B (тогда прямая будет проходить через 0). Значит, смещение будет: 1-0.277 = 0.733B.

Встречаются датчики абсолютного давления с обратной характеристикой (показана на рисунке).

Для таких датчиков смещение можно подобрать опытным путем или посчитать по формуле:

Voff = 1 — g * (5 — VL) / PL, где:

PL — минимальное давление (кПа);

g — наклон кривой (кПа/В);

VL — напряжение соответствующее минимальному давлению.

p.s. В данном случае смещение не относительно 0, а относительно 5В (в сторону убывания).

Пример: Датчик при 20кПа выдает 4.5В и имеет наклон кривой равный 25.7 кПа/В, тогда Voff = 1 — 25.7 * (5 — 4.5) / 20 = 0.36(В)

Чтобы указать что мы используем датчик с обратной характеристикой, нужно указывать наклон кривой со знаком «-«. Например, как показано на ниже:

В вложениях находится прошивка.

Рекомендуется к прочтению  Как выставить зажигание на ваз

В прошивку внесены настройки для двигателя УЗАМ412Д, настройки не откатаны на реальном двигателе, и в любом случае необходимо будет допиливать её на реальном двигателе.

Настройки были внесены на основании трамблерных характеристик, поэтому с данными настройками двигатель должен работать без всяких проблемм, но всеже кривые не являются оптимальными, так как на УОЗ влияют состояния двигателя, износ и настройка ГРМ, качество топлива, а также существующие допуски на детали двигателя, все это учтено при внесении настройки небыло.

Вот сегодня вчера решил изучить вопрос более правильной настройки, зашел на сайт MPSZ2 нашел там прошивку под данный двигатель, и был удивлен, она сильно похожа на то что получилось у меня, решил сравнить, и был удивлен еще больше она идентична моей, посмотрел коментарии, сделана была по все тем же трамблерным характеристикам, люди на ней даже ездили, вроде работает как надо.

Кстати о птичках данная прошивка подходит для двигатель УЗАМ 3313 (1.8л/76 бензин).

Итак установка на авто:

Шкив 60-2 /ДПКВ

Чертеж можно взять на сайте secu-3.org

Для того что бы заменить шкив пришлось снимать радиатор, а также решетку радиатора.

Старый шкив снимался варварским методом так как съемник найти не удалось, поэтому если вы планируете потом устанавливать старый шкив то рекомендую все же обзавестись съемником.

Теперь о правильном порядке установки.

1. Установите ДПКВ.

2. Проверните КВ так что бы метки ВМТ совпали.

3. Снимите шкив, так что бы не сместились метки.

4. Примеряйте но не устанавливайте новый шкив, нарисуйте маркером метку на зубе над которым будет датчик.

5. Отсчитайте 20 зубов начиная с помеченого по часовой стрелке, 21 и 22 спилите, можно болгаркой, главное аккуратно, и не переусердствуйте. Таким образом от места где нет зубов до зуба под датчиком должно быть 20 зубов.

6. Смажте шкив с внутренней и внешней стороны салидолом, или маслом.

7. Устанавливайте шкив на его место.

8. Отрегулируйте положение датчика, а также зазор между датчиком и шкивом, он должен быть в 0.5-1.3мм.

Если кому интересно я допустил ошибку при установке, и примерял ДПКВ без ремня из за чего кронштейн переделывался несколько раз, но все закончилось хорошо.

ДПКВ использовал от ГАЗели, в принципе притензий к нему нет, он меньше чем от ТАЗика поэтому установить его немного легче+он идет с проводом, а разъем можно взять с набора проводки для бесконтактного зажигания.

К сожалению необходимых датчиков у меня нет, поэтому задумался об их приобретении, посмотрев цены на датчики, в частности ДАД, я расстроился, Bosch стоит чуть больше 500грн, а ГАЗовский почти 300грн, если брать б/у то можно сэкономить 100-200грн, но брать б/у я не рискую так как в случае проблем я буду долго думать что глючит датчик или плата, почитав сайт устройства я нашел интересный вопрос/ответ, прицитирую:

Q: Какие ДАД (MAP-сенсоры) можно использовать кроме 45.3829?

A: Любые с похожей характеристикой. Например: 14.3814 (аналог 12.569.240), MPX4250, MPX4100A и т.д.

Нашел другие датчики на http://www.kosmodrom.com.ua , и был приятно удивлен, MPX4250, MPX4100A и им подобные датчики можно купить в пределах 150 грн., экономия достаточно большая, пока плата не готова изучу вопрос неспециализированных (не автомобильных) датчиков, но считаю что данный вариант имеет право на жизнь, правда придется производить калибровку, но мы видь не ищем легких путей?!)

Калибровка достаточно простая, для этого нужно знать школьную математику, иметь вольтметр(можно универсальный), и желательно барометр, порядок калибровки, калибруете погрешность АЦП, после чего добиваетесь что бы показывалось атмосферное давление, выше описано как это делается. если у кого то возникнут проблемы с калибровкой с удовольствием помогу.

Уже после приобретения датчика узнал что это самый правильный путь, так как волговские датчики достаточно ненадежны.

Свечи зажигания, ВВ провода

ВВ провода и свечи можно и нужно использовать штатные, зазор на свечах нужно немного увеличивать, на сколько увеличивать — все зависит от КЗ, например волговские катушки 0.8 зазор, а с ТАЗа 1.1, соответственно она будет лучше, хотя и цена значительно выше.

Осталось все это дело отстроить и готово!

Немного поездив на МПСЗ выявил несколько глюков:

1. Коммутаторы стартуют раньше блока, из за этого на свечах проскакивает искра в момент включения.

2. Блок нужно подключать к стабильному источнику питания через реле, а не через замок зажигания напрямую.

что касается настроек:

Это трамблерные кривые, в принципе меня они устраивали, подходят к двигателям 3313 и 412Д.

Эти кривые (хх, рабочая карта) были выдраны с штатного москвичевского микропроцесорного зажигания МС-4004, подходят к двигателям 3313 и 412Д, свыше 5000 оборотов кривые не соответствуют, разрежение 0 мм.рт.ст. — 600 мм.рт.ст., для Secu-3, верхнее давление Давление на холостых, нижнее давление — давление на холостых минус 80 кПа, скорее всего так правильно.

Это CVS файл, в нем в принципе подписано все, 600 мм.рт.ст. режим ХХ, взят оттуда же, хотите считайте вносите в свою МПСЗ,

Микропроцессорная система зажигания для карбюраторных двигателей. Микропроцессорное зажигание вместо трамблёра

Не секрет, что для авто, работающего на бензиновом ДВС, требуется специально созданная система. Которая служит для воспламенения бензиновых паров в цилиндрах мотора. В разные годы автомобильное зажигание было разным и все время дорабатывалось. Для этого применялись всевозможные схемы. Так вот одной из современных таких схем и стала МПСЗ.

Основные известные системы

Таких систем согласно истории существует и известно всего три:

1. Контактная система.

2. Бесконтактная система.

3. Микропроцессорная система зажигания.

Любое авто, безусловно нуждается в полноценной системе зажигания. На сегодня известны как классические системы, так и современные инжекторные. Безусловно классические варианты во многом проигрывают современным их аналогам. Для автовладельцев разница стала очевидна во многом: по-другому работает двигатель, изменился объем расходования топлива и общий функционал машины.

Именно из-за разницы в качестве систем, владельцы авто с карбюраторным мотором, стали думать как же подстроить новые блоки зажигания под свою классическую железную подружку.

Что же предприняли изготовители в помощь автовладельцам?

Изначально в продажу поступили микропроцессорные варианты зажигания, где был установлен доработанный трамблер, настроенный под совместную работу с датчиком холла и управлением машиной классической марки. И все вроде бы стало неплохо, если не считать что для классики работа распределителя, по-прежнему оставалась проблемной.

Кроме всего прочего в самом начале было понятно, что для электронной системы характеристики уоз для нагретого либо ненагретого мотора явно отличаются. Потому как при настройке уоз на холодную с дальнейшим прогревом двигателя, возникают неизбежные детонации.

Из-за всех неудобных моментов, изготовители систем, решили предпринять следующую доработку. Им пришлось сделать микропроцессорное зажигание для классических авто практически идентичным инжекторному варианту, оставив без изменения лишь управление системы впрыска.

Что это дало?

После всех нововведений, появились следующие преимущества:

1. Искра зажигания стала намного стабильнее.

2. Дребезжание контактов полностью исчезло.

3. Функциональность мотора на холостом ходу почти не уступает инжекторному.

4. Угол опережения зажигания стал более оптимизированным и не допускает начала зоны детонации. Тут учитываются и частоты.

5. Появилась экономичность расхода топлива, в среднем на 10 км, расход составил 6 литров.

Как устроена МПСЗ?

Микропроцессорная бесконтактная система зажигания, не имеет в своей конструкции неких узлов механического типа и выстроена исключительно на компонентах электронного типа. Самым главным компонентом микропроцессорной системы является микропроцессор, который собственно полностью выполняет функцию главного мозга.

В схему микропроцессорной системы, входят следующие компоненты: АКБ, коммутатор, накопительно- распределительная система, блок управления электронного типа, ряд различных функциональных датчиков. А также датчик измерения температуры мотора и датчик напряжения аккумулятора, преобразующий компонент; компонент дроссельной заслонки, преобразователь цифрового формата, катушки, управляющий блок, память, свечи. Конечно от марки и модели устройства компоненты могут быть неодинаковыми.

Что такое ЭБУ в микропроцессерной системе зажигания?

ЭБУ — это микропроцессорный блок управления мотором авто. Также не всем наверняка известно, что микропроцессорный блок управления еще по-другому называют контроллером. Он является важным элементом, который содержит микропроцессорная система зажигания.

Данный контролер занимается тем, что своевременно принимает поступающие данные от различных датчиков. Затем обрабатывает их по особым алгоритмам и отдает команды всем важным устройствам системы. Также эбу ведет непрерывный обмен данными со всеми важными системами авто.

Как настроить систему?

Несмотря на разнообразные и многочисленные страшилки от мастеров сто, настроить микропроцессорное зажигание можно и самостоятельно. Правда настройка потребует значительного времени, нежели особенных знаний.

При изготовлении такого зажигания производители зашивают в микропроцессорный блок усредненные данные по мотору в целом в единую системную таблицу. Однако чтобы выполнить самостоятельную настройку зажигания, нужно подстроить процессор под конкретно ваш мотор, выбрать нужное положение и определить собственные данные. На которых собственно и будет построена ваша микропроцессорная система зажигания в машине.

Итак, для работы нам понадобиться компьютер или ноутбук с кабелем сервисной программулины. Считываем данные датчиков, затем подбираем нужные параметры системы и дальше придерживаемся инструкции в работе.

Когда данные датчика считаны верно и все элементы, предусматривающие микропроцессорное зажигание работают в нормальном режиме, дополнительного вмешательства в работу зажигания не потребуется. По всем теоретическим параметрам которые дают производители микропроцессорное зажигание нормально функционирует без ремонта до 10 лет.

Тонкости работы устройства

В чем же уникальность или тонкость работы современного зажигания? Самой важной тонкостью в работе, которая предусмотрена в МПСЗ, является наличие угла опережения силового узла. Работа которого полностью зависит от параметров давления воздуха в системе впуска и непосредственно вращения коленчатого вала.

Когда вся микропроцессорная система установлена верно, управление автомобилем становится намного комфортнее и мягче. Более того современный монтаж зажигания в форму микропроцессорного, дает возможность взять из мотора машины максимум не утратив при этом ресурс.

В чем принцип действия?

Принцип функционала состоит в том, что в момент работы машины начинают меняться частоты вращения коленвала. Которые тут же контролируются датчиками распредвала и вращения коленчатого вала. На основе зафиксированных параметров идет команда на эбу. И тут же принимается нужный угол опережения.

Более того, когда изменяется нагрузка на силовой узел при движении машины, то выбор угла опережения и фиксация таких изменений полностью ложатся на датчик отслеживающий расход воздуха во время работы. Другими словами системой как бы управляет целый комплекс узлов. И весь процесс выполняется четко как по часам.

Учитывается все: момент и угол опережения, вращения, уровень температуры, частоты оборотов, положение важных узлов, заслонки, функционал цилиндров, наличие своевременной искры и так далее.

Микропроцессорная функция зажигания, призвана также и снижать ненужное напряжение в момент работы всех систем авто.

Пользуясь современным типом систем и данным зажиганием в целом, автовладелец получает максимум комфорта при минимуме затрат!

Преимущества, которые не стоит игнорировать!

Наряду с оптимизацией своего авто, владелец при наличии нового зажигания, получает дополнительно еще и ряд особенных преимуществ.

1. Реальную возможность настроить собственный мотор под любое привлекательное топливо для машины.

2. При наличии авто с ГБО, прирост тяги и общей мощности машины.

3. Полное отсутствие детонаций, стуков при наборе оборотов скорости, причем даже тогда когда в наличии залито далеко не идеальное топливо.

4. У машин бензинового типа, топливо перегорает значительно быстрее, что на порядок снижает расход последнего.

5. В холодный период машина гораздо быстрее и проще заводится.

6. За электронной системой не нужен тотальный контроль со стороны владельца, поскольку контроль возлагается на встроенный дисплей.

7. Машину можно переоборудовать и добавить дополнительный тумблер для легкости переключения на тот или иной вид топлива.

8. На новом типе зажигания владелец получает новые опции, важные параметры держатся на конкретно выставленном уровне.

9. Стартер отключается самостоятельно после запуска мотора.

10. Можно управлять вентилируемостью системы охлаждения.

Выводы

МПСЗ — это настоящая современная альтернатива иным специальным устройствам с подобной работой. Удобство электронным вариантом зажигания, предполагает простоту любых настроек в авто, высокую точность и надежность функционала. Поэтому стоит выбирать именно такое зажигание, чтобы получить все вышеперечисленные преимущества и оценить истинный комфорт!

С момента появления инжекторных систем впрыска с электронными компонентами управления стало понятно, насколько обычные классические системы проигрывают микропроцессорной системе зажигания. Разница в работе мотора и особенно в расходе топлива, была очевидной и впечатляющей. Поэтому подавляющее большинство владельцев классик с карбюраторным мотором самыми разнообразными ухищрениями стремились адаптировать новые микропроцессорные блоки зажигания МПСЗ на своих ласточках.

На классику нужны микропроцессорные «навороты»

Сначала появились неполные аналоги микропроцессорной системы зажигания на классику, в которой был переделан трамблер под работу с датчиком Холла и модифицирована система управления. Но умные автолюбители знают, что в микропроцессорная система зажигания для карбюраторных двигателей проблемным звеном оставался распределитель или трамблер по-русски.

Мало того в неплохой идее электронного зажигания заложен принципиальный недостаток — характеристика углов опережения зажигания для холодного двигателя и прогретого в корне отличается. При настройке углов опережения на трамблере для холодного мотора, после его прогрева обязательно появится детонация.

Поэтому разработчикам микропроцессорных блоков для классики пришлось пойти далее и доработать, превратив систему зажигания для классики, практически в полный аналог инжекторного варианта, за исключением управлением системы впрыска.

Совет! Насколько новая система микропроцессорного зажигания приспособлена под реалии работы на классике, поинтересуйтесь у владельцев «чудо-электроники», отъездивших минимум сезон.

Что дает такая микропроцессорная система зажигания:

  • отсутствие в схеме распределителя зажигания благотворно влияет на стабильность искры и отсутствие «дребезга контактов»;
  • стабильность холостого хода практически не уступает инжекторному двигателю;
  • главное преимущество микропроцессорной системы заключается в «умном» выборе угла опережения зажигания по параметрам мотора, что позволяет работать на оптимальных углах и не вылезать в зону детонации.
  • экономия топлива на обычном, неубитом жигулевском «шестерочном» моторе на круг снижается в среднем с 10 литров бензина до 6-7.

К сведению! Чудесное уменьшение расхода бензина возможно только на абсолютно исправном и отрегулированном карбюраторе, в противном случае электроника только усугубит ситуацию с расходом.

Как работает микропроцессорная система зажигания

Приятным открытием был тот факт, что новую схему микропроцессорной системы вполне реально собрать своими руками по схеме МПСЗ из готовых компонентов. Ну и конечно, чтобы настроить микропроцессорный блок нужен компьютер, шнур СОМ-СОМ или СОМ-USB и пара сервисных программок, в том числе вариант прошивки таблицы углов опережения момента инициации воспламенения.

К сведению! Это наиболее важный этап и отделаться использованием стандартного табличного набора значений не удастся. Например, прошивки МПСЗ для двигателей УЗАМ очень отличаются от ВАЗ, тем более ГАЗ.

В отличие от старых версий, в которых момент формирования высоковольтного свечного импульса определялся распределителем зажигания, в новой микропроцессорной схеме команда на катушку подается на основании обработки сведений от нескольких датчиков:

  • положения коленвала, зачастую требуется покупка новой крышки с приливом под датчик, а при установке немного повозиться из-за малости места для работ;
  • сенсор абсолютного давления выдает на микропроцессорный блок степень разрежения во впускном коллекторе, что позволяет косвенно электронике делать поправку на степень загруженности мотора;
  • датчик температуры ОЖ — охлаждающей жидкости;
  • датчик детонации крепиться согласно инструкции на срединной части блока под специальный болт с гайкой;
  • датчик синхронизации.

Кроме датчиков потребуется сам микропроцессорный блок-коммутатор, новую катушку зажигания на два контакта и жгут проводов с фишками.

Возможность приобретения сборки по частям дает экономию, но не гарантирует стабильной работы

Что можно поставить на классику из существующих МПСЗ

Среди наиболее известных микропроцессорных, чаще всего используют МПСЗ Мaya, Secu 3 или Микас. Собрать любую не представляет труда, при наличии навыков правильно видеть и читать инструкцию со схемой, и выполнять последовательность действий монтажа.

При выборе микропроцессорной системы не стоит пугаться навороченной схемы, которой любят козырять продавцы товара, предлагая услуги знакомого электрика для «гарантированно качественного монтажа за копейки». Все компоненты можно установить на классику своими руками.

При выборе обратите внимание на качество самого блока. Хорошим тоном считается, если нет короблений пластмассовых частей заусениц, микротрещин. Вторым показателем можно привести наличие большой рассеивающей поверхности в виде алюминиевой основы. Микропроцессор остается самой капризной частью и к выбору места под капотом или в салоне необходимо относиться со всей серьезностью.

Катушки зажигания можно выделить в отдельный блок, как вариант можно закрепить непосредственно рядом со свечами на крышке головки.

Настройка МПСЗ

Настройка работы микропроцессорной системы по сути требует не сколько знаний, сколько терпения. Производитель зашивает в микропроцессорном блоке среднепотолочные данные по мотору в одной таблице. Они позволяют запустить двигатель и выполнить все управляющие опции по датчикам и кривым углов.

Нам предстоит обучить процессор под свой мотор и получить свои таблицы, на основании которых работа зажигания будет максимально оптимизирована.

Подключаем ноутбук через кабель и с помощью предустановленной сервисной программулины, пытаемся рассмотреть показания датчиков. Выбираем параметры системы и далее действуем согласно инструкции.

В процесс езды в памяти процессора накапливается определенный массив данных по кривым УОЗ. Обычно рекомендуют подключить комп к МПЗС повторно и выполнить коррекцию коэффициентов по самой оптимальной кривой.

Если все компоненты системы МПЗ надлежащего качества, монтаж микропроцессорной системы выполнен по правилам и вам не зальют на мойке водой сам электронный блок системы, дальнейших вмешательств в работу МПЗС не потребуется. Теоретически такая система зажигания должна проработать до десятка лет.

МПСЗ. Микропроцессорная система зажигания на классику на следующем видео:

Сегодня в современных автомобилях широко применяется микропроцессорная система зажигания, которая полностью исключает механические приспособления. Она используется для автомобилей с инжекторным двигателем. Можно сказать, что это – классика, которая изначально производилась еще тридцать лет назад для “ВАЗа”. Как тогда, так и сейчас, ключевым элементом микропроцессорной системы является микропроцессор, который выполняет функции главного мозга. Основным преимуществом такой системы считают возможность регулировать углы опережения зажигания (далее УОЗ) посредством многих параметров. Также стоит отметить, что нет необходимости ее настраивать в процессе эксплуатации.

Структурная схема МПСЗ состоит из:

  • Датчики входные (датчик температуры и давления коллектора, датчик температуры мотора и напряжения аккумулятора);
  • Преобразователи;
  • Показатель дроссельной заслонки;
  • Преобразователь аналого-цифровой;
  • Ключевой элемент – микропроцессорный блок управления (мозговой центр);
  • Память оперативная;
  • Память постоянная;
  • Катушки с двумя выходами;
  • Свечи;
  • Коммутаторы.

Зажигание предназначено для воспламенения воздушно-топливной смеси в цилиндрах. Микропроцессорное зажигание имеет способность формировать зависимость УОЗ. Такое явление происходит только в карбюраторных бензиновых двигателях. Формирование зависимости угла опережения происходит в зависимости от того, с какой частотой вращается коленвал.

Причины, ставшие толчком создания данной системы следующие:

  • невозможность исполнения нормальных и действующих зависимостей УОЗ регуляторов датчиков-распределителей, которые устанавливаются на карбюраторе двигателя;
  • первоначальная не состыковка характеристик на этапе сборочного конвейера;
  • значительное изменение характеристик на этапе их эксплуатации.

Использование для автомобиля МПСЗ – это подарок для вашего автомобиля.

Автомобиль, имеющий микропроцессорное зажигание, обладает большими преимуществами над автомобилем, в котором контактное или бесконтактное. Работа машины становится динамичной и приемистой.

Как работает

Бортовой компьютер автомобиля объединяет в себе все функции управления, которые объединяют микропроцессорное зажигание. Различные универсальные датчики выполняют функции входных сигналов. Кварцевый резонатор, который имеет микропроцессорный блок управления, прерывает цепь низкого напряжения, в зависимости от положения угла опережения, для каждого цилиндра.

Во время работы мотора авто на главный блок управления поступает информация о нагрузке, температуре, детонации, напряжения батареи, информация о положении заслонки дроссельной, а также о положении коленчатого вала и частоте его вращения. Вся информация, которая подается от датчиков, поступает к преобразователю, который в свою очередь преобразует ее в электрические сигналы. Преобразователь должен передавать только сигналы в цифровой форме, так как микропроцессорный блок управления обрабатывает только числа.

Но, некоторые сигналы не нуждаются в преобразовании, так как поступают в виде импульсов (сигналы о положении и частоте вращения коленвала). После того, как блок управления получает данные от преобразователя, микропроцессор определяет УОЗ относительно карты углов, которая хранится в памяти.

Микропроцессорное зажигание обладает огромным преимуществом, так как его работа обеспечивает правильное управление зажиганием в зависимости от положения и частоты вращения коленвала, заслонки дроссельной, температуры в моторе и т.д. Так как микропроцессорная система зажигания не обладает механическим распределителем (трамблером), поэтому есть возможность обеспечить высокую энергию искры.

Чем лучше трамблера?

Чтобы понять, чем МПC лучше распределителя (трамблера), я приведу несколько примеров негативной работы последнего элемента. Первое – это система автомобиля работает нестабильно из-за плохой работы самого трамблера. Второе – система трамблер состоит из движущихся частей. Подвижные элементы иногда выходят из строя, а это сказывается на всей работе системы автомобиля. Часто причинами поломки подвижных элементов и контактов трамблера является электрическая эрозия и сгорание. От этого понижается его надежность и продуктивность. Третье – заложенная конструктивно неспособность трамблера правильно реагировать на угол опережения зажигания относительно показателей оборота движка машины.

Что же касается МПСЗ, то эта система не только способна получать и обрабатывать данные об угле опережения зажигания, но и оптимально производить регулировку. Чтобы произвести регулировку системе нужно получить показания двух параметров: температуры ОУЗ и датчика детонации. Трамблер не в силах воспринимать такие показатели. Помимо этого качества, микропроцессорный блок устраняет и не допускает много других недочетов трамблера, в том числе и тех, которые указанные выше.

Если вы решили поставить на свою машину МПСЗ, то вы автоматически обладаете рядом преимуществ. Такими являются: уменьшение расхода топлива, улучшение и повышение динамических показателей авто, создаются плавные переходы от одной передачи к другой, при этом мощность остается та же при низких оборотах двигателя. Так что желаю вам успехов в установке и эксплуатации.

Видео “Микропроцессорная система зажигания”

На записи показано что такое МСЗ и как ее установить на автомобиль.

Вот надумал делать МПСЗ, о всех своих успехах и поражен я буду писать здесь.

Почему именно её — проект открытый, хорошая документация, относительная простота.

изначально был выбран сложный путь, с изготовлением печатной платы самостоятельно, но ничего не получилось поэтому пришлось отказаться от этого пути и купить за 160 грн. готовую, покупал у разработчика.

Дальше ее нужно спаять, собственно сам процес пайки я не описываю, так как для специалиста это просто и очевидно, для не специалиста это достаточно сложно, поэтому если паяльником не владеете то лучше купить уже спаяную, либо попросить того кто это умеет делать.

Прошивается в принципе достаточно стандартно, и что бы не изобретать велосипед скопипастю, в принципе делал все так как написано:

Q: Как и чем прошить блок Secu-3?

A: Под прошивкой блока понимается запись программы во флеш память микроконтроллера. Эта программа, будучи однажды записанной, помимо своих основных функций умеет так же сама себя прошивать. Эту функцию выполняет т.н. загрузчик или bootloader размер которого составляет 512 байт и который расположен в самом конце флеш памяти. Однако для того чтобы воспользоваться возможностями загрузчика его туда нужно однажды записать. Поэтому:

Сервисный режим:

После сборки устройства его необходимо единожды сконфигурировать и прошить через сервисный разъём, обозначенный на схеме как ISP Adapter. Обе операции рекомендуется делать при помощи AVReAl . При данных операциях естественно необходимо питание блока от +12В.

Параметры запуска avreal.exe следующие.

Установка фьюзов (конфигурирование):

avreal32.exe -as -p1 +atmega16 -o16MHZ -w -fBODLEVEL=ON,BODEN=ON,SUT=01,CKSEL=F,CKOPT=ON,EESAVE=ON,BOOTRST=ON,JTAGEN=OFF,BOOTSZ=2

Прошивка:

avreal32.exe -as -p1 +atmega16 -o16MHZ -e -w secu-3_app.a90

Пример установки FUSE-битов в PonyProg:

Архив с батниками для патчинга контрольной суммы, установки фьюзов и прошивки

Обращаю особое внимание что в сервисном режиме под файлом прошивки понимается файл в шестнадцатеричном (хексовом) формате с расширением *.a90 или *.hex, размером > 30кб и содержащий символы только шестнадцатеричной системы 0-9ABCDEF . Если всё сделано правильно, то при следующей перезагрузке блок один раз моргнет светодиодом, подключенным через резистор между выводом 16 (лампа СЕ) и землёй. На этом сервисный режим можно считать законченным и все дальнейшие изменения программы можно делать в пользовательском режиме.

Пользовательский режим:

Для пользовательского режима необходим менеджер (управляющая программа для РС) и рабочий COM порт, соединенный обычным удлинителем COM порта с блоком SECU. Если же менеджер при запуске ругается на невозможность открытия COM порта, то необходимо настроить правильный номер порта в менеджере либо искать неполадки в операционной системе. Обращаю особое внимание что в пользовательском режиме под файлом прошивки понимается файл в *.bin формате, содержащий любые символы но размер этого файла только такой: 16384 байт. Для конвертации прошивки из хексового формата в бинарный необходимо воспользоваться утилитой hex2bin.exe . Обратная конвертация не понадобится. Пользовательский режим можно разделить на режим загрузчика и рабочий режимы:

Режим загрузчика: Вход в этот режим происходит при подаче питания с установленной перемычкой bootloader. При этом основная часть программы не работает, работает только загрузчик, который способен прочитать или записать основную программу во флеш память микроконтроллера по командам из менеджера. Для этого в менеджере на вкладке «Данные прошивки» необходимо установить чекбокс Boot Loader и по ПРАВОЙ кнопке мыши выбрать желаемую операцию. Данный режим нужно использовать в том случае если повреждена основная микропрограмма, если же всё работает, то эти операции можно делать и в рабочем режиме, естественно при остановленом двигателе.

Рабочий режим: перемычка bootloader снята, статус «connected», активна вкладка «Параметры и монитор». На вкладке «Данные прошивки» доступны операции по ПРАВОЙ кнопке мыши.

После прошивки необходимо откалибровать АЦП, как делается:

Смотрим что показывает программа.

Меряем что на самом деле.

потом повторяем но нужны разные значения.

после чего строим систему уравнений с двумя неизвестными, и решаем его, описывать как считаем не буду, там математика 8й класс школы, но если кто захочет я помогу посчитать.

где а,b — то что показывает программа

Рекомендуется к прочтению  Электрооборудование автомобиля зажигание

m,n то что должно быть на самом деле.

Вносим в прошивку и сохраняем.

В принципе таким же образом можно калибровать и датчики.

Q: Как правильно выполнить калибровку ДАД?

А: На вкладке «Функции» необходимо подобрать значения параметров «Смещение» и «Наклон» таким образом, чтобы при неработающем двигателе прибор «Абсолютное давление» показывал бы текущее атмосферное давление. Как правило это значение составляет 99-100кПа. Таблица перевода давления в различные единицы измерения . Смысл параметра «Смещение» описан на рисунке. Параметр «Наклон» определяет на сколько кило-Паскалей должно измениться давление, чтобы напряжение на выходе датчика изменилось на 1 Вольт.

Настройки для ДАД МРХ4100 : Наклон кривой — 18.51 кПа/B, смещение кривой — 0.73В.

Пояснение:

1. Наклон указан в даташите — 54mV / kPa. Coответственно 1 / 0.054 = 18.51 (кПа/В).

2. В даташите указано что при 20кПа, датчик выдает приблизительно 0.3B. Значит при 18.51 кПа датчик должен выдавать (теоретически): 0.3 / (20 / 18.51) = 0.277B. Смещение (в менеджере) должно быть таким, чтобы при давлении 18.51 кПа мы имели 1B (тогда прямая будет проходить через 0). Значит, смещение будет: 1-0.277 = 0.733B.

Встречаются датчики абсолютного давления с обратной характеристикой (показана на рисунке).

Для таких датчиков смещение можно подобрать опытным путем или посчитать по формуле:

Voff = 1 — g * (5 — VL) / PL, где:

PL — минимальное давление (кПа);

g — наклон кривой (кПа/В);

VL — напряжение соответствующее минимальному давлению.

p.s. В данном случае смещение не относительно 0, а относительно 5В (в сторону убывания).

Пример: Датчик при 20кПа выдает 4.5В и имеет наклон кривой равный 25.7 кПа/В, тогда Voff = 1 — 25.7 * (5 — 4.5) / 20 = 0.36(В)

Чтобы указать что мы используем датчик с обратной характеристикой, нужно указывать наклон кривой со знаком «-«. Например, как показано на ниже:

В вложениях находится прошивка.

В прошивку внесены настройки для двигателя УЗАМ412Д, настройки не откатаны на реальном двигателе, и в любом случае необходимо будет допиливать её на реальном двигателе.

Настройки были внесены на основании трамблерных характеристик, поэтому с данными настройками двигатель должен работать без всяких проблемм, но всеже кривые не являются оптимальными, так как на УОЗ влияют состояния двигателя, износ и настройка ГРМ, качество топлива, а также существующие допуски на детали двигателя, все это учтено при внесении настройки небыло.

Вот сегодня вчера решил изучить вопрос более правильной настройки, зашел на сайт MPSZ2 нашел там прошивку под данный двигатель, и был удивлен, она сильно похожа на то что получилось у меня, решил сравнить, и был удивлен еще больше она идентична моей, посмотрел коментарии, сделана была по все тем же трамблерным характеристикам, люди на ней даже ездили, вроде работает как надо.

Кстати о птичках данная прошивка подходит для двигатель УЗАМ 3313 (1.8л/76 бензин).

Итак установка на авто:

Шкив 60-2 /ДПКВ

Чертеж можно взять на сайте secu-3.org

Для того что бы заменить шкив пришлось снимать радиатор, а также решетку радиатора.

Старый шкив снимался варварским методом так как съемник найти не удалось, поэтому если вы планируете потом устанавливать старый шкив то рекомендую все же обзавестись съемником.

Теперь о правильном порядке установки.

1. Установите ДПКВ.

2. Проверните КВ так что бы метки ВМТ совпали.

3. Снимите шкив, так что бы не сместились метки.

4. Примеряйте но не устанавливайте новый шкив, нарисуйте маркером метку на зубе над которым будет датчик.

5. Отсчитайте 20 зубов начиная с помеченого по часовой стрелке, 21 и 22 спилите, можно болгаркой, главное аккуратно, и не переусердствуйте. Таким образом от места где нет зубов до зуба под датчиком должно быть 20 зубов.

6. Смажте шкив с внутренней и внешней стороны салидолом, или маслом.

7. Устанавливайте шкив на его место.

8. Отрегулируйте положение датчика, а также зазор между датчиком и шкивом, он должен быть в 0.5-1.3мм.

Если кому интересно я допустил ошибку при установке, и примерял ДПКВ без ремня из за чего кронштейн переделывался несколько раз, но все закончилось хорошо.

ДПКВ использовал от ГАЗели, в принципе притензий к нему нет, он меньше чем от ТАЗика поэтому установить его немного легче+он идет с проводом, а разъем можно взять с набора проводки для бесконтактного зажигания.

К сожалению необходимых датчиков у меня нет, поэтому задумался об их приобретении, посмотрев цены на датчики, в частности ДАД, я расстроился, Bosch стоит чуть больше 500грн, а ГАЗовский почти 300грн, если брать б/у то можно сэкономить 100-200грн, но брать б/у я не рискую так как в случае проблем я буду долго думать что глючит датчик или плата, почитав сайт устройства я нашел интересный вопрос/ответ, прицитирую:

Q: Какие ДАД (MAP-сенсоры) можно использовать кроме 45.3829?

A: Любые с похожей характеристикой. Например: 14.3814 (аналог 12.569.240), MPX4250, MPX4100A и т.д.

Нашел другие датчики на http://www.kosmodrom.com.ua , и был приятно удивлен, MPX4250, MPX4100A и им подобные датчики можно купить в пределах 150 грн., экономия достаточно большая, пока плата не готова изучу вопрос неспециализированных (не автомобильных) датчиков, но считаю что данный вариант имеет право на жизнь, правда придется производить калибровку, но мы видь не ищем легких путей?!)

Калибровка достаточно простая, для этого нужно знать школьную математику, иметь вольтметр(можно универсальный), и желательно барометр, порядок калибровки, калибруете погрешность АЦП, после чего добиваетесь что бы показывалось атмосферное давление, выше описано как это делается. если у кого то возникнут проблемы с калибровкой с удовольствием помогу.

Уже после приобретения датчика узнал что это самый правильный путь, так как волговские датчики достаточно ненадежны.

Свечи зажигания, ВВ провода

ВВ провода и свечи можно и нужно использовать штатные, зазор на свечах нужно немного увеличивать, на сколько увеличивать — все зависит от КЗ, например волговские катушки 0.8 зазор, а с ТАЗа 1.1, соответственно она будет лучше, хотя и цена значительно выше.

Осталось все это дело отстроить и готово!

Немного поездив на МПСЗ выявил несколько глюков:

1. Коммутаторы стартуют раньше блока, из за этого на свечах проскакивает искра в момент включения.

2. Блок нужно подключать к стабильному источнику питания через реле, а не через замок зажигания напрямую.

что касается настроек:

Это трамблерные кривые, в принципе меня они устраивали, подходят к двигателям 3313 и 412Д.

Эти кривые (хх, рабочая карта) были выдраны с штатного москвичевского микропроцесорного зажигания МС-4004, подходят к двигателям 3313 и 412Д, свыше 5000 оборотов кривые не соответствуют, разрежение 0 мм.рт.ст. — 600 мм.рт.ст., для Secu-3, верхнее давление Давление на холостых, нижнее давление — давление на холостых минус 80 кПа, скорее всего так правильно.

Это CVS файл, в нем в принципе подписано все, 600 мм.рт.ст. режим ХХ, взят оттуда же, хотите считайте вносите в свою МПСЗ,

для остальных двигателей CVS файл сделаю по требованию.

Изменено 1 августа, 2012 пользователем CrAzYMaN

МИКРОПРОЦЕССОРНОЕ ЗАЖИГАНИЕ ВМЕСТО ТРАМБЛЁРА

Не вдаваясь в подробные рассуждалки «зачем это надо?» хочу отметить ряд негативных моментов работы трамблера, как основного элемента системы зажигания подобного типа. Это прежде всего:
— нестабильность работы;
— общая ненадежность, связанная с наличием движущихся частей, наличием распределителя искры с контактами (подвергающимися электрической эрозии и подгоранию);
— принципиальная (заложенная в конструкцию) неспособность правильно регулировать УОЗ в зависимости от числа оборотов двигателя (регулирование это осуществляется посредством центробежного регулятора, не способного изменять УОЗ согласно идеальной характеристике). А так же ряд других недостатков.
Микропроцессорная система же способна помимо устранения этих недостатков воспринимать и осуществлять регулирование УОЗ дополнительно исходя из двух дополнительных параметров, которые не может воспринять трамблер, а именно: измерение температуры и учет УОЗ в зависимости от нее и наличие датчика детонации, способного предотвращать это вредное явление.

Итак, что нам необходимо для внедрения этой системы на мотор. А необходимо нам следующее:

Слева-направо: (рис. 1) демпфер (шкив) коленвала УМЗ 4213, 2 катушки зажигания ЗМЗ 406, датчик температуры ОЖ (ДТОЖ), датчик детонации (ДД), датчик абсолютного давления (ДАД), датчик синхронизации (ДС), жгут проводов ЗМЗ 4063 (для карбюраторной версии), (рис. 2) контроллер марки Микас 7.1 243.3763 000-01

Собирается все по следующей схеме:

Рис. 3

1 — Микас 7.1 (5.4); 2 — датчик абсолютного давления (ДАД); 3 — датчик температуры ОЖ (ДТОЖ); 4 — датчик детонации (ДД); 5 — датчик синхронизации (ДС) или ДПКВ (положения КВ); 6 — клапан ЭПХХ (опционально); 7 — колодка диагностики; 8 — клемма в кабину (не используется); 9 — катушки зажигания (левая — на 1, 4 цилиндры, правая — на 2, 3); 10 — свечи зажигания.

Назначение контактов на Микасе. Сверху-вниз, см. рисунок 3:
30 — общий «-» датчиков;
47 — питание датчика давления;
50 — датчик давления «+»;
45 — вход, датчик температуры охлаждающей жидкости «+»;
11 — входной сигнал с датчика детонации «+»;
49 — датчик частоты (ДПКВ) «+»;
48 — датчик частоты (ДПКВ) «-«;
19 — общий силовой (земля);
46 — управление ЭПХХ (в моем случае не используется);
13 — L — линия диагностики (L-Line);
55 — К — линия диагностики (K-Line);
18 — клемма аккумулятора + 12 В;
27 — замок зажигания (контакт КЗ);
3 — к лампе неисправности;
38 — к тахометру;
20 — катушка зажигания 2, 3 (т.к. ДПКВ планируется расположить с другой стороны, чем в штатном исполнении, то этот контакт пойдет на КЗ 1, 4);
1 — катушка зажигания 1, 4 (на 2, 3);
2, 14, 24 — масса.

Без переделок вообще ставится только демпфер КВ, он полностью взаимозаменяем со старым.

ДТОЖ вкрутить в 417-й мотор некуда, а располагаться он должен на малом круге циркуляции ОЖ. Больше всего для этих целей подходит штатное место датчика температуры. Однако посадочное место этого датчика больше, чем ДТОЖ новой системы, поэтому пришлось изготовить переходник из какой-то сантехнической детали вроде переходника, наружняя резьба которого совпала с резьбой в помпе, куда вкручивается датчик температуры. На внутренней поверхности переходника пришлось изготовить резьбу самостоятельно. В итоге датчик встал на место довольно плотно, при заведенном двигателе течи не было. Старый датчик температуры пришлось пока переместить на место датчика аварийной температуры на радиаторе. Вот расположение ДТОЖ:

Датчик детонации тоже так просто не встал. Хотя можно было купить специальную гайку от УМЗ 4213, которая располагалась на шпильке крепления ГБЦ. Однако я совершенно случайно нашел выступ на блоке цилиндров с отверстием с резьбой (для чего — не известно). Однако болт, который туда можно закрутить оказался на 1 мм примерно толще, чем отверстие в ДД. Это отверстие пришлось рассверлить. Теперь ДД находится на более удачном месте, чем было задумано в штате: на блоке цилиндров между 3-м и 4-м цилиндрами.

(ДД по центру фотографии)

Для установки ДПКВ необходимо изготовить уголок из подходящего материала (у меня — алюминий) и закрепить на нем датчик.

Затем, всю конструкцию повесить на шпильку крепления крышки шестерен РВ:

Расстояние от датчика до зубьев шкива должно быть в пределах 0.5-1 мм. Датчик необходимо расположить на 20-м зубе после отсутствующих по ходу вращения КВ в положении ВМТ 3, 4 цилиндров (в штате ДПКВ располагается, ориентируясь на ВМТ 1, 4 цилиндра, но, т.к. сам датчик расположен на 180° от штатного места расположения, необходимо это учесть и ориентировать его на ВМТ 3, 4 цилиндров, т.е. на поворот КВ на 180°). Т.к. в стандарте степень сжатия УМЗ 417 в пределах 7-и, то для использования высокооктанового бензина опытным путем было определено оптимальное опережение зажигания на 20° больше стандартного, поэтому я расположил датчик на 24-м примерно зубе шкива КВ (для стандартного топлива желательно установить ДПКВ на 20-м зубе после отсутствующих). В любом случае, необходимо по месту проверить правильность расположения датчика, найдя ВМТ сначала 1, 4-го, а за тем 2, 3-го цилиндров. Есть возможность установки крышки шестерен РВ от УМЗ 4213 (говорят, должна подойти) со штатным креплением для ДПКВ.

Для закрепления катушек зажигания можно найти крышку клапанов от УМЗ 4213 (я не нашел) или изготовить крепление самостоятельно. Для этого были куплены 4 штуки длинных болтов М6 длиной 100 мм, шайбочки-гаечки и две пластины с отверстиями.

Для исключения выскакивания катушки из-под пластин, края из были загнуты.

Катушки можно разместить прямо на крышке клапанов. Т.к. донор — буханка, то места вверх под капотом мало, поэтому было решено разместить катушки непосредственно на крышке, прижав их болтами пластинами. Отверстия на всякий случай нужно просверлить в местах между коромыслами, чтобы исключить возможное задевание коромыслом шляпки болта на внутренней части крышки.

Катушки прижимаются пластинами с загнутыми краями непосредственно к крышке клапанов, такое крепление довольно надежно и выскакивание катушки из-под пластины исключено. Для надежного крепления лучше завернуть еще и контргайку, чтобы болты не свалились вниз, на ГБЦ.

Рис. 17, 18, 19, 20

Размещение КЗ под капотом и примерка ВВ проводов, которые, кстати, остались штатными. Для 1, 4-го цилиндров удобно использовать КЗ, располагающуюся позади, т.к. провод 4-го цилиндра короткий, а 1-го достаточно длинный, КЗ для 2, 3-го цилиндров можно располагать более свободно, длины проводов достаточно.

Так же была проведена модернизация проводки: во-первых, был удлинен провод, идущий к ДД.

В проводе есть экранирующая оплетка, ее необходимо нарастить и сделать во всю длину наращенного провода,

во-вторых, изменена схема питания ЭБУ: в штате питание компьютера отключалось вместе с питанием КЗ, я сделал питание ЭБУ постоянным. Для этого надо разобрать проводку, удалить лишние провода, на схеме рис. 3 черный провод от колодки 8 отсоединить от клапана 6 и припаять оба к проводу, идущему к клемме 18 ЭБУ, отсоединить из косички провод питания ЭБУ и подсоединить к постоянному плюсу АКБ (я подсоединил непосредственно к клемме АКБ, т.к. она ближе всего к компьютеру). Для этого необходимо разобрать колодку, подсоединяемую к контроллеру и изменить схему:

Питание КЗ взял с резистора штатной катушки, подсоединив к клемме + (минуя резистор), припаяв «ушко»:

Расположение контроллера — дело вкуса. В буханках, как мне кажется, оптимальным будет расположение за водительским сиденьем, над аккумулятором:

Рис. 27

Для проводки кабеля под капот в пластине, закрывающей подкапотное пространство (в буханках), было просверлено отверстие:

Провода, без дополнительного удлинения, аккуратно расположить не получилось, поэтому часть оказалась длиньше, часть короче, поэтому все на виду, аккуратисты могут заморочиться, мне все равно.

ДАД я так же закрепил прямо на проводке, датчик не тяжелый, так что никуда не денется, к нему подсоединяется тот же шланг, что и идет от карбюратора к вакуумному регулятору трамблера.

На рисунке ниже можно разглядеть новую петлю для капота, старые пришлось срезать, т.к. одна из них задевала за катушку зажигания.

Микропроцессорная система зажигания на классику своими руками. Как работает микропроцессорная система зажигания на классике

Одной из особенностей бензинового ДВС является использование специальной системы, предназначенной для воспламенения паров бензина в цилиндрах мотора. За всю историю развития автомобиля зажигание реализовывалось различными способами, оно развивалось от простейших схем до сложных электронных устройств. И как один из возможных вариантов построения такой системы была создана МПСЗ.

Немного истории

Известны такие основные системы, обеспечивающие воспламенение паров бензина в ДВС автомобиля:

  • контактная;
  • бесконтактная;
  • микропроцессорная система зажигания (МПСЗ).
  1. Контактная. Исторически это была первая попытка, она оказалась достаточно успешной и проработала много лет. Схема такой системы приведена ниже
    Принцип работы устройства прост – размыкание контактов прерывателя разрывает первичную цепь, из-за чего во вторичной обмотке бобины наводится высокое напряжение, которое распределителем направляется на одну из свечей зажигания. Это было простое, отработанное изделие, конечно со своими недостатками, которые устранялись по мере развития техники и элементной базы.
  2. Бесконтактная. Принцип работы в основном схож с предыдущим, но изделие является более надежным. В нем контактный механический прерыватель заменен электронными устройствами – коммутатором и датчиком. Схема такого изделия показана на рисунке
  3. Микропроцессорная система, не содержащая механических узлов и построенная целиком на электронных компонентах.
    Принцип работы так же остался неизменным, функциональная схема такого устройства показана на рисунке.

Микропроцессорная система зажигания на классику

Понятно, что контактная система, устанавливаемая в том числе и на вазовскую классику, еще находится в эксплуатации и не может конкурировать с МПСЗ. Но тут возникает очень интересный момент.

Принцип самого искрообразования в целом остался неизменным. Понятно, что искра, генерированная МПСЗ, будет мощнее и лучше, но главным ее достоинством является возможность управления непосредственно процессом искрообразования, путем изменения угла опережения зажигания (УОЗ).

Здесь нужно сделать небольшое пояснение – скорость движения автомобиля влияет на момент появления искры в цилиндрах. Теоретически это происходит при нахождении поршня в ВМТ. Однако при движении на высокой скорости, из-за конечных параметров горения смеси, искрообразование должно начинаться немного раньше, чем поршень дойдет до ВМТ.

Регулировка УОЗ позволяет сформировать искру в нужный момент, благодаря чему мотор выдает максимальную мощность, при этом уменьшается расход бензина и улучшается тепловой режим его работы. Вот эту функцию берет на себя МПСЗ, микропроцессорная система зажигания на классику.

Фактически, она дает вторую жизнь старому автомобилю с карбюратором – его возможности конечно будут уступать современному автомобилю, но МПСЗ позволит значительно улучшить работу контактной системы с мотором и карбюратором.

Фактически трамблер выполняет только функцию распределения напряжения по свечам, а управление зажиганием осуществляет МПСЗ. Она представляет собой электронное устройство, выполненное на микроконтроллере, которое в зависимости от показания датчиков (Холла или положения коленчатого вала) выставляет нужный УОЗ.

Могут быть и другие подходы к реализации подобного управления, например по температуре двигателя или разрежению во впускном коллекторе . Но независимо от этого МПСЗ продается в виде комплекта, подготовленного для установки на конкретный автомобиль, содержащего нужные жгуты.

При всех изменениях, затронувших систему зажигания автомобиля, принцип ее работы в целом остался неизменным – формирование высоковольтного напряжения осуществляется прерыванием протекания постоянного тока в первичной обмотке бобины. За все время существования автомобиля создана не одна схема, позволяющая значительно улучшить процесс искрообразования, но именно МПСЗ совмещает старую систему зажигания, установленную на многие машины, и микропроцессорное управление, продлевая жизнь автомобилю.

С момента появления инжекторных систем впрыска с электронными компонентами управления стало понятно, насколько обычные классические системы проигрывают микропроцессорной системе зажигания. Разница в работе мотора и особенно в расходе топлива, была очевидной и впечатляющей. Поэтому подавляющее большинство владельцев классик с карбюраторным мотором самыми разнообразными ухищрениями стремились адаптировать новые микропроцессорные блоки зажигания МПСЗ на своих ласточках.

На классику нужны микропроцессорные «навороты»

Сначала появились неполные аналоги микропроцессорной системы зажигания на классику, в которой был переделан трамблер под работу с датчиком Холла и модифицирована система управления. Но умные автолюбители знают, что в микропроцессорная система зажигания для карбюраторных двигателей проблемным звеном оставался распределитель или трамблер по-русски.

Мало того в неплохой идее электронного зажигания заложен принципиальный недостаток – характеристика углов опережения зажигания для холодного двигателя и прогретого в корне отличается. При настройке углов опережения на трамблере для холодного мотора, после его прогрева обязательно появится детонация.

Поэтому разработчикам микропроцессорных блоков для классики пришлось пойти далее и доработать, превратив систему зажигания для классики, практически в полный аналог инжекторного варианта, за исключением управлением системы впрыска.

Что дает такая микропроцессорная система зажигания:

  • отсутствие в схеме распределителя зажигания благотворно влияет на стабильность искры и отсутствие «дребезга контактов»;
  • стабильность холостого хода практически не уступает инжекторному двигателю;
  • главное преимущество микропроцессорной системы заключается в «умном» выборе угла опережения зажигания по параметрам мотора, что позволяет работать на оптимальных углах и не вылезать в зону детонации.
  • экономия топлива на обычном, неубитом жигулевском «шестерочном» моторе на круг снижается в среднем с 10 литров бензина до 6-7.

Как работает микропроцессорная система зажигания

Приятным открытием был тот факт, что новую схему микропроцессорной системы вполне реально собрать своими руками по схеме МПСЗ из готовых компонентов. Ну и конечно, чтобы настроить микропроцессорный блок нужен компьютер, шнур СОМ-СОМ или СОМ-USB и пара сервисных программок, в том числе вариант прошивки таблицы углов опережения момента инициации воспламенения.

К сведению! Это наиболее важный этап и отделаться использованием стандартного табличного набора значений не удастся. Например, прошивки МПСЗ для двигателей УЗАМ очень отличаются от ВАЗ, тем более ГАЗ.

В отличие от старых версий, в которых момент формирования высоковольтного свечного импульса определялся распределителем зажигания, в новой микропроцессорной схеме команда на катушку подается на основании обработки сведений от нескольких датчиков:

  • положения коленвала, зачастую требуется покупка новой крышки с приливом под датчик, а при установке немного повозиться из-за малости места для работ;
  • сенсор абсолютного давления выдает на микропроцессорный блок степень разрежения во впускном коллекторе, что позволяет косвенно электронике делать поправку на степень загруженности мотора;
  • датчик температуры ОЖ – охлаждающей жидкости;
  • датчик детонации крепиться согласно инструкции на срединной части блока под специальный болт с гайкой;
  • датчик синхронизации.

Кроме датчиков потребуется сам микропроцессорный блок-коммутатор, новую катушку зажигания на два контакта и жгут проводов с фишками.

Возможность приобретения сборки по частям дает экономию, но не гарантирует стабильной работы

Что можно поставить на классику из существующих МПСЗ

Среди наиболее известных микропроцессорных, чаще всего используют МПСЗ Мaya, Secu 3 или Микас. Собрать любую не представляет труда, при наличии навыков правильно видеть и читать инструкцию со схемой, и выполнять последовательность действий монтажа.

При выборе микропроцессорной системы не стоит пугаться навороченной схемы, которой любят козырять продавцы товара, предлагая услуги знакомого электрика для «гарантированно качественного монтажа за копейки». Все компоненты можно установить на классику своими руками.

При выборе обратите внимание на качество самого блока. Хорошим тоном считается, если нет короблений пластмассовых частей заусениц, микротрещин. Вторым показателем можно привести наличие большой рассеивающей поверхности в виде алюминиевой основы. Микропроцессор остается самой капризной частью и к выбору места под капотом или в салоне необходимо относиться со всей серьезностью.

Катушки зажигания можно выделить в отдельный блок, как вариант можно закрепить непосредственно рядом со свечами на крышке головки.

Настройка МПСЗ

Настройка работы микропроцессорной системы по сути требует не сколько знаний, сколько терпения. Производитель зашивает в микропроцессорном блоке среднепотолочные данные по мотору в одной таблице. Они позволяют запустить двигатель и выполнить все управляющие опции по датчикам и кривым углов.

Нам предстоит обучить процессор под свой мотор и получить свои таблицы, на основании которых работа зажигания будет максимально оптимизирована.

Подключаем ноутбук через кабель и с помощью предустановленной сервисной программулины, пытаемся рассмотреть показания датчиков. Выбираем параметры системы и далее действуем согласно инструкции.

В процесс езды в памяти процессора накапливается определенный массив данных по кривым УОЗ. Обычно рекомендуют подключить комп к МПЗС повторно и выполнить коррекцию коэффициентов по самой оптимальной кривой.

Если все компоненты системы МПЗ надлежащего качества, монтаж микропроцессорной системы выполнен по правилам и вам не зальют на мойке водой сам электронный блок системы, дальнейших вмешательств в работу МПЗС не потребуется. Теоретически такая система зажигания должна проработать до десятка лет.

МПСЗ. Микропроцессорная система зажигания на классику на следующем видео:

ВАЗ 2106 1995 г. МПСЗ на классику

В 2008 году сменил штатную контактную на бесконтактную систему зажигания на коммутаторе 76.3734. Эффект ощутим был. Но хотелось еще больше. Тогда установил карбюратор, такой как у восьмерки «Солекс», номер не помню (табличку при установке снял как лишний вес J). Да, жигули ободрилось. При обгоне намного проще и лучше маневр. На какое-то время меня удовлетворило. С приходом холодов всегда доставало то, что пока не прогреть двигатель противно ехать по городу, и часто зажигание устанавливал ранее. Но, когда приходилось ехать на расстояния по длиннее, двигатель прогревался до рабочей температуры, и при нагрузках слышно было детонацию. Не чего не оставалось, как опять остановится и вернуть трамблер на прежнее место.

Сначала хотел поставить шаговый двигатель вместо вакумника на трамблере и кнопки управления в кабину, чтоб регулировать не выходя из машины . Уже сделал драйвер на Аtiny2313 и оставалось установить все это. Потом подумал, что б сделать типа «октан-коректор» на каком-то контролере чтоб не лепить шаговый двигатель. Велосипед изобретать не стал и полез в инет за готовыми решениями. Вот так наткнулся на СЕКу. Как раз то, что надо.

Бегло читая форум, посвященный этому проекту, захотелось все и сразу. Не стал делать плату, искать запчасти и т.д. Купил готовый блок. Остальное заказал в магазине:

– переднюю крышку с приливом под датчик коленвала, шкив и сам датчик от инжекторной 7-ки;

– ДАД от Lanos (12569240);

– ДТОЖ 19.3828(+новый тройник, чтоб заранее все подготовить, как на фото);

– ДД Bosh 0261231176(провода проложил, датчик пока не установил) ;

Для SECU-3T

Катушку и коммутатор оставил прежние. Если вдруг сека умрет, фишку коммутатора вставляю назад в трамблер, и классический вариант довезет J.

В моем варианте, нет смысла ставить две катушки с комутаторами. А четыре – дороговато. Резистор в трамблере убрал и поставил перемычку. Хочу купить и поставить провода к свечам без сопротивления (комплект 20$). Искра будет немножко мощнее, хотя уровень помех тоже, но мешать не будет.

В общем, установил все это. Места установки на фото:

тройник для ДТОЖ SECU

В менеджере установил для моего ДАД 20кПа/1Вольт и смещение 0.4В. Перепробовав, остановился на таблице “1.5 Динамичная”, но все 16 “кривых” поднимал где-то на 5гр., а местами на до 10гр. Температурную коррекцию тоже поднимал на несколько градусов до температуры 85ºС. В общем, двигатель у меня любит более ранее зажигание.

Ну и самое главное, какой с всего этого результат получился?.

Раньше на 100км (70км на трасе + 30 по Львову) выпивала 8 литров. А сейчас где-то 6.8литр. Конечно для меня это не на первом месте было в ожидании но радует.

Шустрая такая стала во всем диапазоне оборотов движка (до 4500об/мин, дальше не пробовал – крыльев нету. , а уже за 145км). В общем – ласточка:).

Понравилось регулировка ХХ, особенно когда с наклона на передаче (на 1-й или 2-й по ужасной дороге) – не дает подниматься оборотам. Холодный двигатель работает на много приятней, а раньше из-за позднего зажигания тупо реагировал на педаль газа и т.д и т.п.

15 комментариев

МПСЗ SECU-3t.какое лучше поставить на ваз 2106.объем 1.3.карб.озон

Лучше SECU-3T, т.к. является продолжением SECU-3 и имеет больший функционал.

а что лучше?сека или МПСЗ.но в МПСЗ вроде нет датчика температуры.

Рекомендуется к прочтению  Как выставить зажигание на пассате

Все проводку и все датчики и т д искать самому?

SECU-3 – это и есть МПСЗ – Микропроцессорная система зажигания. Хотя на данный момент это уже скорее не МПСЗ, а контроллер управления карбюраторным двигателем. Сложно назвать систему более функциональную для карбюраторного двигателя чем SECU.

Провода обычные многожильные, сечением 0,5 – 0,75 мм, экранированные 2 жилы в экране берутся со стерео микрофона или у нас.

Датчики все заводские и распространенные (редких нет вообще) – в автомагазине.

Воздержимся от комментариев, спросите на форуме.

Задавайте вопросы на форуме, здесь уже отошли от темы…

ДАД подключил к карбюратору куда должен идти шланг от крышки ГБЦ?!и как работает всё в норме?

ДАД должен быть подключен к впускному коллектору!

Остальные шланги трубки как на стоке.

А не могли бы выложить распиновку на ДАД от Lanos (12569240), вроде в интернете нашол а ДАД всё равно показывает 108кПа и не меняется давление

Подскажите каталожный номер тройника под ДТОЖ?

Существуют следующие способы такой модернизации:

1. Установка на штатную контактную систему зажигания дополнительного блока управления (Пульсар, Искра).

Плюсы и минусы систем

Контактная система зажигания (КСЗ).

КСЗ штатно устанавливаеться на большинство Жигулей и москвичей с двигателем ваз 2106.

Преимуществами этой системы является предельная простота и надежность. Внезапный отказ маловероятен, ремонт даже в полевых условиях не сложен и займет не много времени.

Основных недостатков у этой системы три. Первое — ток подается на первичную обмотку катушки зажигания через контактную группу. Что накладывает существенное ограничение на величину напряжения на вторичной обмотке катушки(до 1.5 кВ), а значит сильно ограничивает энергию искры. Вторым недостатком является высокая потребность в обслуживании этой системы. Т.е. необходимо периодически следить за зазором в КГ, за углом замкнутого состояния КГ. Контакты КГ надо периодически очищать поскольку они в процессе эксплуатации подгорают. Вал трамблера необходимо после каждых 10 тыс. км. пробега смазывать, капая масло в специальную масленку. Также необходимо смазывать кулачек распределителя посредством смачивания маслом ветрового фильца. Третьим недостатком является низкая эффективность этой системы при высоких оборотах двигателя связанная с т.н. дребезгом контактной группы.

Модернизация этой системы возможна. Заключается она в замене элементов этой системы на более качественные и надежные импортные. Заменить можно крышку трамблера, бегунок, контактную группу, катушку.

Кроме того систему можно модернизировать посредством использования блока зажигания типа «Пульсар» для КСЗ. Преимущества и недостатки «Пульсаров» будут рассмотрены ниже. Но один из недостатков КСЗ устраняется, поскольку ток для формирования высоковольтного напряжения подается на первичную обмотку катушки зажигания через мощные полупроводниковые силовые цепи «Пульсара», а не через КГ. Что позволяет существенно поднять мощность искры. При этом КГ не подгорает. Но чистить ее все равно придется, она начинает окисляться.

Бесконтактная система зажигания (БСЗ, БКСЗ).

БСЗ штатно устанавливаеться на переднеприводные вазы и часть жигулей. Кроме того эта система может быть поставлена на автомобиль оснащенный КСЗ, такая замена не требует никаких дополнительных переделок.

Основных преимуществ у этой системы перед КСЗ три.

Первое — ток подается на первичную обмотку катушки зажигания через полупроводниковый коммутатор, что позволяет обеспечить гораздо большую энергию искры за счет возможности получения гораздо большего напряжения на вторичной обмотке катушки зажигания (до 10 кВ).

Второе — электромагнитный формирователь импульсов, функционально заменяющий КГ, реализованный с помощью датчика Холла, обеспечивает по сравнению с КГ существенно лучшую форму импульсов и их стабильность, причем во всем диапазоне оборотов двигателя. В результате двигатель оснащенный БСЗ имеет лучшие мощностные характеристики и лучшую топливную экономичность (до 1 л. на 100 км).

Третьим преимуществом этой системы является гораздо более низкая по сравнению с КСЗ потребность в обслуживании. Все обслуживание системы сводится лишь в смазывании вала трамблера после каждых 10 тыс. км. пробега.

Основным недостатком этой системы является более низкая надежность. Коммутаторы которыми первоначально комплектовались эти системы отличались неприлично низкой надежностью. Часто они выходили из строя после нескольких тысяч пробега. Позже был разработан модифицированный коммутатор. Он имеет несколько лучшую заявленную надежность, но она также низка поскольку устройство его не очень удачное. Поэтому в любом случае в БСЗ не следует применять отечественные коммутаторы, лучше купить импортный. Поскольку система более сложная, то в случае отказа более сложны диагностика и ремонт. Особенно в полевых условиях.

Модернизация этой системы возможна. Заключается она в замене элементов этой системы на более качественные и надежные импортные. Заменить можно крышку трамблера, бегунок, датчик Холла, коммутатор, катушку. Кроме того систему можно модернизировать посредством использования блока зажигания типа «Пульсар» ли «Октан» для БСЗ.

Очень важным недостатком обоих вышерассмотренных систем, КСЗ и БСЗ, является то, что обе эти системы не оптимально устанавливают угол опережения зажигания. Начальный уровень опережения зажигания устанавливается вращением трамблера. После этого трамблер жестко фиксируется, а угол соответствует лишь составу рабочей смеси на момент установки этого угла. При изменении параметров топлива, а качество бензина у нас очень не стабильное, при изменении параметров воздуха, например температуры и давления, результирующие параметры рабочей смеси могут меняться, причем существенно. В результате начальный уровень установки зажигания уже не будет соответствовать параметрам этой смеси.

В процессе работы двигателя, для обеспечения оптимального сгорания рабочей смеси, требуется коррекция угла опережения зажигания. Автоматические регуляторы угла опережения зажигания в этих системах, вакуумный и центробежный, достаточно грубые и примитивные устройства не отличающиеся стабильностью работы. Оптимальная настройка этих устройств не простая задача. Еще одним существенным недостатком КСЗ и БСЗ является наличие электромеханического высоковольтного распределителя бегунок-крышка трамблера реализованного с помощью контактного уголька скользящего по вращающейся разностной пластине. Это накладывает дополнительное ограничение на величину высоковольтного напряжения на свечах зажигания, причем это особенно актуально для БСЗ.

микропроцессорная система управления зажиганием

Многие недостатки присущие КСЗ и БСЗ отсутствуют в микропроцессорной системе управления зажиганием (двигателем) (МПСЗ, МСУД).

МПСЗ штатно устанавливалась на часть М2141 с двигателем ВАЗ-2106. Комплект для установки МПСЗ на двигатель ВАЗ-2106 изредка встречается в магазинах.

Существенными преимуществами МПСЗ является то, что она обеспечивает, или точнее должна обеспечивать, достаточно оптимальное управление зажиганием в зависимости от частоты вращения коленчатого вала, давления в впускном трубопроводе, температуры двигателя, положения дроссельной заслонки карбюратора. В системе отсутствует механический распределитель, поэтому она может иметь обеспечить очень высокую энергию искры.

Недостатками этой системы является низкая надежность, в т.ч. и потому, что в системе присутствует два достаточно сложных электронных блока выпускавшихся и выпускающиеся мелкосерийно (а поэтому полукустарно). В случае отказа очень сложны диагностика и ремонт. Особенно в полевых условиях.

Традиционно, в сетевых конференциях, на вопросы новичков по поводу возможных проблем с выходом из строя МПСЗ, всегда находится кто-то, уверенно сообщающий что проблемы с эксплуатацией подобных систем надуманы. Что якобы достаточно возить запасные блоки и в случае чего их менять. Мотивы сообщающих подобные вещи не очень понятны, но очевидно что эти люди просто ни разу не сталкивались в реальности с реальными отказами подобных систем, и особенно с диагностикой этих отказов в полевых условиях.

При оценке целесообразности перехода на МПСЗ следует также видимо учитывать и то, что для обеспечения соответствия по оптимальности управления зажиганием уровню даже самых простейших современных инжекторных систем, МПСЗ принципиально не хватает по крайней мере датчика детонации, датчика массового расхода воздуха и датчика состава сгоревшей смеси. Поэтому система эта в любом случае достаточно неполноценная.

Модернизация этой системы по надежности невозможна, поскольку основные узлы уникальные отечественные. Модернизация с целью оптимизации этой системы осуществляется подбором программного обеспечения (прошивок) под свой двигатель. Поскольку для двигателя ВАЗ-2106 эта система является в определенной степени экзотикой, найти подходящую прошивку будет скорее всего сложной и нетривиальной задачей.

Блоки управления зажиганием

Блоки управления зажиганием Пульсар, вне зависимости от назначения, т.е. для КСЗ или БСЗ, состоят из самого блока и выносного пульта. Наиболее интересными возможностями этих блоков, по заявлением их изготовителей, является обеспечение функций «октан-коррекции» и т.н. «резервный режим». Функция «октан-коррекции» должна обеспечиваться за счет корректировки начального уровня опережения зажигания (УОЗ) из салона автомобиля с помощью пульта. На самом деле с помощью этого пульта упрощенно регулируется запаздывание сигнала с датчика положения коленвала (контактной группы для КСЗ или датчика Холла для БСЗ). Запаздывание это в Пульсаре практически никак не связано с оборотами двигателя, т.е. регулировка этого запаздывания вовсе не является регулировкой УОЗ. Благодаря этому польза от такой «октан-коррекции» весьма сомнительна. Ну может за исключением случаев периодического использования бензина с разными октановыми числами. Т.е. если УОЗ начально установлен на 95-ый бензин, то при заправке 76-ым действительно можно с помощью пульта, из салона, убрать детонацию (в народе называемую звоном пальцев) не залезая под капот.»Резервный режим» предназначен для обеспечения работы двигателя при выходе из строя датчика положения коленвала. Обеспечивается он с помощью простейшего генератора импульсов. Т.е. фактически в этом режиме непрерывно генерируются кратковременные импульсы которые обеспечивают формирование множественных высоковольтных импульсов (искр) на той свече, на которую повернут бегунок. Один из этих импульсов скорее всего действительно с высокой степенью вероятности обеспечит воспламенение смеси в соответствующем цилиндре, но даже о минимальной стабильности работы двигателя в этом режиме говорить трудно. Попробовав проехаться на машине с двигателем работающем в таком режиме, сразу захочется купить в багажник запасной коммутатор.

Схемотехнически Пульсары это достаточно кyстаpные вариации на тему коммутаторов для БСЗ от АТЭ-2. Т.е. конечно как повезет, но надеяться на нормальную надежность и долговечность не стоит. Желательна доработка, по крайней выходной силовой части.

Конструктивно Пульсары выполнены достаточно неудачно, корпус очень громоздкий, и при этом имеет несколько больших отверстий снизу. Благодаря этому под корпус будет попадать влага и грязь, а плата как следует не защищена внутри ничем, что опять же не позволяет надеяться на нормальную надежность и долговечность этого устройства.

Развитием Пульсара является Силыч. Судя по тому что конструктив у них с Пульсарами очень схожий, можно предположить и общие корни. Силыч в отличие от Пульсара оснащен датчиком детонации, который должен обеспечивать корректировку УОЗ. Но к сожалению принцип коррекции УОЗ подобен тому что используется в Пульсаре, т.е. он практически не зависит от оборотов. Поэтому корректировка УОЗ будет скорее всего далеко не оптимальна. Схемотехнически и конструктивно Силыч подобен Пульсару, т.е. надеяться на нормальную надежность и долговечность в эксплуатации не стоит. Правда иногда встречаются Силычи с импортными элементами в выходных цепях, что разумеется должно положительно сказаться на их надежности. Но это большая редкость, а убедиться в магазине что к чему не получится.

Грубо говоря, оптимальным вариантом апгрейда классической системы зажигания, по моему мнению, является установка БСЗ.

Бесконтактная система зажигания (БСЗ) с датчиком Холла оптимизирует процесс сгорания в двигателе, что позволяет обеспечить:

Повышение мощности двигателя на 5-7% и динамических свойств автомобиля;

Снижение расхода топлива до 5%;

Снижение выбросов вредных веществ в атмосферу до 20%;

Стабильный пуск при отрицательных температурах до минус 30°С и при повышенной влажности (что сберегает аккумуляторную батарею);

Устойчивое искрообразование при пониженном напряжении питания (до 6 В);

Сведение до минимума технического обслуживания системы зажигания: отсутствие периодической регулировки и замены контактов;

Стабильность работы двигателя на протяжении всего периода эксплуатации.

СРАВНИТЕЛЬНЫЕ ПАРАМЕТРЫ КЛАССИЧЕСКОЙ И БЕСКОНТАКТНОЙ СИСТЕМ ЗАЖИГАНИЯ

Время нарастания вторичного напряжения с 2 до 15 кВ

Энергия искрового разряда

Длительность искрового разряда

Вторичное напряжение max

Для установки бесконтактного зажигания необходимо приобрести коммутатор, катушку, трамблер и жгут. Коммутатор и катушка от ВАЗ-2108/09. Трамблер классический, для БСЗ. Жгут классический или от Нивы. Если у вас стоят штатные (красные) высоковольтные провода то их придется заменить, они для БСЗ не подходят. Если высоковольтные провода не штатные, но не очень хорошие, их желательно тоже заменить, для БСЗ качество проводов очень актуально. Обязательно запаситесь дополнительными проводами и клеммами.

1. Бесконтактный трамблер с маркировкой 38.3706. Внимание! Часто, под видом классического, продают трамблер от Нивы. У него маркировка 3810.3706. Внешне он точно такой же. От классического он отличается другими характеристиками центробежного регулятора и другим вакуумником. Можно покупать в крайнем случае, но придется переделать под классику.

2. Коммутатор от ВАЗ 2108-09. Выбор огромный.

3. Катушка зажигания от ВАЗ 2108-09. Маркировка 27.3705.

4. Жгут проводов от Нивы. Перед установкой настоятельно рекомендую разобрать все разъемы и пропаять контакты. Изначально они просто обжаты. Качество обжима оставляет желать лучшего. Бывает, провода просто вываливаются.

5. Свечи от ВАЗ 2108-09 – они отличаются увеличенным

6. Высоковольтные провода – лучше силиконовые.

Для правильной установки зажигания потребуется стробоскоп.

Ps: Недавно поставил себе БСЗ. Ставил с большой долей сомнения, что «машину будет не узнать». Но действительно, стало намного лучше. Отлично тянет, нет детонации, превосходная разгонная динамика — все это действительно есть. Так, что отбросьте все сомнения в необходимости установки. Особенно порадовало поведение машины на низких и на холостых оборотах… в пробках нет падения оных, да и машина начинает ехать практически не прогретая. В общем рекомендую всем

С момента появления инжекторных систем впрыска с электронными компонентами управления стало понятно, насколько обычные классические системы проигрывают микропроцессорной системе зажигания. Разница в работе мотора и особенно в расходе топлива, была очевидной и впечатляющей. Поэтому подавляющее большинство владельцев классик с карбюраторным мотором самыми разнообразными ухищрениями стремились адаптировать новые микропроцессорные блоки зажигания МПСЗ на своих ласточках.

На классику нужны микропроцессорные «навороты»

Сначала появились неполные аналоги микропроцессорной системы зажигания на классику, в которой был переделан трамблер под работу с датчиком Холла и модифицирована система управления. Но умные автолюбители знают, что в микропроцессорная система зажигания для карбюраторных двигателей проблемным звеном оставался распределитель или трамблер по-русски.

Мало того в неплохой идее электронного зажигания заложен принципиальный недостаток — характеристика углов опережения зажигания для холодного двигателя и прогретого в корне отличается. При настройке углов опережения на трамблере для холодного мотора, после его прогрева обязательно появится детонация.

Поэтому разработчикам микропроцессорных блоков для классики пришлось пойти далее и доработать, превратив систему зажигания для классики, практически в полный аналог инжекторного варианта, за исключением управлением системы впрыска.

Совет! Насколько новая система микропроцессорного зажигания приспособлена под реалии работы на классике, поинтересуйтесь у владельцев «чудо-электроники», отъездивших минимум сезон.

Что дает такая микропроцессорная система зажигания:

  • отсутствие в схеме распределителя зажигания благотворно влияет на стабильность искры и отсутствие «дребезга контактов»;
  • стабильность холостого хода практически не уступает инжекторному двигателю;
  • главное преимущество микропроцессорной системы заключается в «умном» выборе угла опережения зажигания по параметрам мотора, что позволяет работать на оптимальных углах и не вылезать в зону детонации.
  • экономия топлива на обычном, неубитом жигулевском «шестерочном» моторе на круг снижается в среднем с 10 литров бензина до 6-7.

К сведению! Чудесное уменьшение расхода бензина возможно только на абсолютно исправном и отрегулированном карбюраторе, в противном случае электроника только усугубит ситуацию с расходом.

Как работает микропроцессорная система зажигания

Приятным открытием был тот факт, что новую схему микропроцессорной системы вполне реально собрать своими руками по схеме МПСЗ из готовых компонентов. Ну и конечно, чтобы настроить микропроцессорный блок нужен компьютер, шнур СОМ-СОМ или СОМ-USB и пара сервисных программок, в том числе вариант прошивки таблицы углов опережения момента инициации воспламенения.

К сведению! Это наиболее важный этап и отделаться использованием стандартного табличного набора значений не удастся. Например, прошивки МПСЗ для двигателей УЗАМ очень отличаются от ВАЗ, тем более ГАЗ.

В отличие от старых версий, в которых момент формирования высоковольтного свечного импульса определялся распределителем зажигания, в новой микропроцессорной схеме команда на катушку подается на основании обработки сведений от нескольких датчиков:

  • положения коленвала, зачастую требуется покупка новой крышки с приливом под датчик, а при установке немного повозиться из-за малости места для работ;
  • сенсор абсолютного давления выдает на микропроцессорный блок степень разрежения во впускном коллекторе, что позволяет косвенно электронике делать поправку на степень загруженности мотора;
  • датчик температуры ОЖ — охлаждающей жидкости;
  • датчик детонации крепиться согласно инструкции на срединной части блока под специальный болт с гайкой;
  • датчик синхронизации.

Кроме датчиков потребуется сам микропроцессорный блок-коммутатор, новую катушку зажигания на два контакта и жгут проводов с фишками.

Возможность приобретения сборки по частям дает экономию, но не гарантирует стабильной работы

Что можно поставить на классику из существующих МПСЗ

Среди наиболее известных микропроцессорных, чаще всего используют МПСЗ Мaya, Secu 3 или Микас. Собрать любую не представляет труда, при наличии навыков правильно видеть и читать инструкцию со схемой, и выполнять последовательность действий монтажа.

При выборе микропроцессорной системы не стоит пугаться навороченной схемы, которой любят козырять продавцы товара, предлагая услуги знакомого электрика для «гарантированно качественного монтажа за копейки». Все компоненты можно установить на классику своими руками.

При выборе обратите внимание на качество самого блока. Хорошим тоном считается, если нет короблений пластмассовых частей заусениц, микротрещин. Вторым показателем можно привести наличие большой рассеивающей поверхности в виде алюминиевой основы. Микропроцессор остается самой капризной частью и к выбору места под капотом или в салоне необходимо относиться со всей серьезностью.

Катушки зажигания можно выделить в отдельный блок, как вариант можно закрепить непосредственно рядом со свечами на крышке головки.

Настройка МПСЗ

Настройка работы микропроцессорной системы по сути требует не сколько знаний, сколько терпения. Производитель зашивает в микропроцессорном блоке среднепотолочные данные по мотору в одной таблице. Они позволяют запустить двигатель и выполнить все управляющие опции по датчикам и кривым углов.

Нам предстоит обучить процессор под свой мотор и получить свои таблицы, на основании которых работа зажигания будет максимально оптимизирована.

Подключаем ноутбук через кабель и с помощью предустановленной сервисной программулины, пытаемся рассмотреть показания датчиков. Выбираем параметры системы и далее действуем согласно инструкции.

В процесс езды в памяти процессора накапливается определенный массив данных по кривым УОЗ. Обычно рекомендуют подключить комп к МПЗС повторно и выполнить коррекцию коэффициентов по самой оптимальной кривой.

Если все компоненты системы МПЗ надлежащего качества, монтаж микропроцессорной системы выполнен по правилам и вам не зальют на мойке водой сам электронный блок системы, дальнейших вмешательств в работу МПЗС не потребуется. Теоретически такая система зажигания должна проработать до десятка лет.

МПСЗ. Микропроцессорная система зажигания на классику на следующем видео:

МИКРОПРОЦЕССОРНОЕ ЗАЖИГАНИЕ ВМЕСТО ТРАМБЛЁРА

Не вдаваясь в подробные рассуждалки «зачем это надо?» хочу отметить ряд негативных моментов работы трамблера, как основного элемента системы зажигания подобного типа. Это прежде всего:
— нестабильность работы;
— общая ненадежность, связанная с наличием движущихся частей, наличием распределителя искры с контактами (подвергающимися электрической эрозии и подгоранию);
— принципиальная (заложенная в конструкцию) неспособность правильно регулировать УОЗ в зависимости от числа оборотов двигателя (регулирование это осуществляется посредством центробежного регулятора, не способного изменять УОЗ согласно идеальной характеристике). А так же ряд других недостатков.
Микропроцессорная система же способна помимо устранения этих недостатков воспринимать и осуществлять регулирование УОЗ дополнительно исходя из двух дополнительных параметров, которые не может воспринять трамблер, а именно: измерение температуры и учет УОЗ в зависимости от нее и наличие датчика детонации, способного предотвращать это вредное явление.

Итак, что нам необходимо для внедрения этой системы на мотор. А необходимо нам следующее:

Слева-направо: (рис. 1) демпфер (шкив) коленвала УМЗ 4213, 2 катушки зажигания ЗМЗ 406, датчик температуры ОЖ (ДТОЖ), датчик детонации (ДД), датчик абсолютного давления (ДАД), датчик синхронизации (ДС), жгут проводов ЗМЗ 4063 (для карбюраторной версии), (рис. 2) контроллер марки Микас 7.1 243.3763 000-01

Собирается все по следующей схеме:

Рис. 3

1 — Микас 7.1 (5.4); 2 — датчик абсолютного давления (ДАД); 3 — датчик температуры ОЖ (ДТОЖ); 4 — датчик детонации (ДД); 5 — датчик синхронизации (ДС) или ДПКВ (положения КВ); 6 — клапан ЭПХХ (опционально); 7 — колодка диагностики; 8 — клемма в кабину (не используется); 9 — катушки зажигания (левая — на 1, 4 цилиндры, правая — на 2, 3); 10 — свечи зажигания.

Назначение контактов на Микасе. Сверху-вниз, см. рисунок 3:
30 — общий «-» датчиков;
47 — питание датчика давления;
50 — датчик давления «+»;
45 — вход, датчик температуры охлаждающей жидкости «+»;
11 — входной сигнал с датчика детонации «+»;
49 — датчик частоты (ДПКВ) «+»;
48 — датчик частоты (ДПКВ) «-«;
19 — общий силовой (земля);
46 — управление ЭПХХ (в моем случае не используется);
13 — L — линия диагностики (L-Line);
55 — К — линия диагностики (K-Line);
18 — клемма аккумулятора + 12 В;
27 — замок зажигания (контакт КЗ);
3 — к лампе неисправности;
38 — к тахометру;
20 — катушка зажигания 2, 3 (т.к. ДПКВ планируется расположить с другой стороны, чем в штатном исполнении, то этот контакт пойдет на КЗ 1, 4);
1 — катушка зажигания 1, 4 (на 2, 3);
2, 14, 24 — масса.

Без переделок вообще ставится только демпфер КВ, он полностью взаимозаменяем со старым.

ДТОЖ вкрутить в 417-й мотор некуда, а располагаться он должен на малом круге циркуляции ОЖ. Больше всего для этих целей подходит штатное место датчика температуры. Однако посадочное место этого датчика больше, чем ДТОЖ новой системы, поэтому пришлось изготовить переходник из какой-то сантехнической детали вроде переходника, наружняя резьба которого совпала с резьбой в помпе, куда вкручивается датчик температуры. На внутренней поверхности переходника пришлось изготовить резьбу самостоятельно. В итоге датчик встал на место довольно плотно, при заведенном двигателе течи не было. Старый датчик температуры пришлось пока переместить на место датчика аварийной температуры на радиаторе. Вот расположение ДТОЖ:

Датчик детонации тоже так просто не встал. Хотя можно было купить специальную гайку от УМЗ 4213, которая располагалась на шпильке крепления ГБЦ. Однако я совершенно случайно нашел выступ на блоке цилиндров с отверстием с резьбой (для чего — не известно). Однако болт, который туда можно закрутить оказался на 1 мм примерно толще, чем отверстие в ДД. Это отверстие пришлось рассверлить. Теперь ДД находится на более удачном месте, чем было задумано в штате: на блоке цилиндров между 3-м и 4-м цилиндрами.

(ДД по центру фотографии)

Для установки ДПКВ необходимо изготовить уголок из подходящего материала (у меня — алюминий) и закрепить на нем датчик.

Затем, всю конструкцию повесить на шпильку крепления крышки шестерен РВ:

Расстояние от датчика до зубьев шкива должно быть в пределах 0.5-1 мм. Датчик необходимо расположить на 20-м зубе после отсутствующих по ходу вращения КВ в положении ВМТ 3, 4 цилиндров (в штате ДПКВ располагается, ориентируясь на ВМТ 1, 4 цилиндра, но, т.к. сам датчик расположен на 180° от штатного места расположения, необходимо это учесть и ориентировать его на ВМТ 3, 4 цилиндров, т.е. на поворот КВ на 180°). Т.к. в стандарте степень сжатия УМЗ 417 в пределах 7-и, то для использования высокооктанового бензина опытным путем было определено оптимальное опережение зажигания на 20° больше стандартного, поэтому я расположил датчик на 24-м примерно зубе шкива КВ (для стандартного топлива желательно установить ДПКВ на 20-м зубе после отсутствующих). В любом случае, необходимо по месту проверить правильность расположения датчика, найдя ВМТ сначала 1, 4-го, а за тем 2, 3-го цилиндров. Есть возможность установки крышки шестерен РВ от УМЗ 4213 (говорят, должна подойти) со штатным креплением для ДПКВ.

Для закрепления катушек зажигания можно найти крышку клапанов от УМЗ 4213 (я не нашел) или изготовить крепление самостоятельно. Для этого были куплены 4 штуки длинных болтов М6 длиной 100 мм, шайбочки-гаечки и две пластины с отверстиями.

Для исключения выскакивания катушки из-под пластин, края из были загнуты.

Катушки можно разместить прямо на крышке клапанов. Т.к. донор — буханка, то места вверх под капотом мало, поэтому было решено разместить катушки непосредственно на крышке, прижав их болтами пластинами. Отверстия на всякий случай нужно просверлить в местах между коромыслами, чтобы исключить возможное задевание коромыслом шляпки болта на внутренней части крышки.

Катушки прижимаются пластинами с загнутыми краями непосредственно к крышке клапанов, такое крепление довольно надежно и выскакивание катушки из-под пластины исключено. Для надежного крепления лучше завернуть еще и контргайку, чтобы болты не свалились вниз, на ГБЦ.

Рис. 17, 18, 19, 20

Размещение КЗ под капотом и примерка ВВ проводов, которые, кстати, остались штатными. Для 1, 4-го цилиндров удобно использовать КЗ, располагающуюся позади, т.к. провод 4-го цилиндра короткий, а 1-го достаточно длинный, КЗ для 2, 3-го цилиндров можно располагать более свободно, длины проводов достаточно.

Так же была проведена модернизация проводки: во-первых, был удлинен провод, идущий к ДД.

В проводе есть экранирующая оплетка, ее необходимо нарастить и сделать во всю длину наращенного провода,

во-вторых, изменена схема питания ЭБУ: в штате питание компьютера отключалось вместе с питанием КЗ, я сделал питание ЭБУ постоянным. Для этого надо разобрать проводку, удалить лишние провода, на схеме рис. 3 черный провод от колодки 8 отсоединить от клапана 6 и припаять оба к проводу, идущему к клемме 18 ЭБУ, отсоединить из косички провод питания ЭБУ и подсоединить к постоянному плюсу АКБ (я подсоединил непосредственно к клемме АКБ, т.к. она ближе всего к компьютеру). Для этого необходимо разобрать колодку, подсоединяемую к контроллеру и изменить схему:

Питание КЗ взял с резистора штатной катушки, подсоединив к клемме + (минуя резистор), припаяв «ушко»:

Расположение контроллера — дело вкуса. В буханках, как мне кажется, оптимальным будет расположение за водительским сиденьем, над аккумулятором:

Рис. 27

Для проводки кабеля под капот в пластине, закрывающей подкапотное пространство (в буханках), было просверлено отверстие:

Провода, без дополнительного удлинения, аккуратно расположить не получилось, поэтому часть оказалась длиньше, часть короче, поэтому все на виду, аккуратисты могут заморочиться, мне все равно.

ДАД я так же закрепил прямо на проводке, датчик не тяжелый, так что никуда не денется, к нему подсоединяется тот же шланг, что и идет от карбюратора к вакуумному регулятору трамблера.

На рисунке ниже можно разглядеть новую петлю для капота, старые пришлось срезать, т.к. одна из них задевала за катушку зажигания.

Источник http://kurskavtoservis.ru/mikroprocessornoe-zazhiganie-na-klassiku-svoimi-rukami-mikroprocessornaya-sistema-zazhiganiya-mpsz-na/

Источник http://tdiesel.ru/mikroprocessornaya-sistema-zazhiganiya-dlya-karbyuratornyh.html

Источник http://edukr.ru/windscreen-replacement-and-repair/mikroprocessornaya-sistema-zazhiganiya-na-klassiku-svoimi-rukami-kak-rabotaet/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: