Характеристика высоковольтных проводов зажигания для авто, проверка и ремонт

Содержание

Электронное зажигание для автомобиля. Системы зажигания бензиновых двигателей: принцип работы Электрическая схема электронного зажигания

Приветствую уважаемых коллег-радиолюбителей. Многие имели дело с очень простыми, и потому очень не надёжными системами зажигания в мотоциклах, мопедах, лодочных моторах и подобных изделиях прошлого века. Был и у меня мопед. Искра у него пропадала так часто и по стольким разным причинам, что это очень надоедало. Вы, вероятно, и сами видели постоянно встречающихся на дорогах мотолюбителей без искры, которые пытаются завестись с разбега, с горки, с толкача. В общем пришлось придумывать свою систему зажигания. Требования были такие:

  • должна быть максимально проста, но не в ущерб функциональности;
  • минимум переделок в месте установки;
  • питание безаккумуляторное;
  • улучшение надёжности и мощности искры.

Всё это, или почти всё, было реализовано и прошло многолетнюю проверку. Остался доволен и хочу предложить собрать такую схему вам, у кого остались двигатели из прошлого века. Но и современные двигатели можно снабдить этой системой, если собственная пришла в негодность, а покупать новую дорого. Не подведёт!

С новой системой электронного зажигания искра увеличилась на порядок, ранее в солнечный день её и не увидишь, после зазор свечи был увеличен с 0.5 до ~1 мм и искра бело-голубая (на испытательном стенде в лабораторных условиях искрой поджигалась даже тонкая киповская бумага). Всякие мелкие загрязнения свечи стали не существенными, так как система тиристорная. Заводиться стал мопед не то что с пол — с четверть оборота. Многие старые свечи снова можно было вытащив из «мусорного ведра» ставить в работу.

Был убран вечно «плюющийся» и загаживавший радиатор декомпрессор, ведь заглушить мотор теперь можно простым выключателем или кнопкой. Был отключён вечно требующий ухода прерыватель — раз настроив, ухода не требует никакого.

Схема модуля зажигания

Монтажная схема модуля

Печатные платы для сборки

Для малого потребления тока была выбрана КМОПовская микросхема КР561ЛЕ5 и стабилизатор на светодиодах. КР561ЛЕ5 работает начиная с 3 В и с очень малым (15 uA) током, что является важным для данной схемы.

Компаратор на элементах: DD1.1, DD1.2, R1, R2 служит для более чёткого реагирования на уровень нарастающего напряжения после индукционного датчика и для устранения реакции на помехи. Формирователь импульса запуска на элементах: DD1.3, DD1.4, R3, C1 нужен для формирования нужной длительности импульса, для хорошей работы импульсного трансформатора, чёткого отпирания тиристора и для всё той же экономии тока питания схемы.

Импульсный трансформатор Т1 служит также для развязки от высоковольтной части схемы. Ключ выполнен на транзисторной сборке К1014КТ1А — он формирует хороший импульс, с крутыми фронтами и достаточным током в первичной обмотке импульсного трансформатора, что обеспечивает, в свою очередь, надёжное отпирание тиристора. Импульсный трансформатор изготовлен на ферритовом кольце 2000НМ / К 10*6*5 с обмотками по 60-80 витков провода ПЕВ или ПЕЛ 0.1 — 0.12 мм.

Стабилизатор напряжения на светодиодах был выбран по причине очень малого начального тока стабилизации, что ещё вносит свой вклад в экономию тока потребления схемы, но, при этом, чётко стабилизирует напряжение на микросхеме на уровне 9 В (1.5 В один светодиод) и ещё служит дополнительно световым индикатором наличия напряжения с магнеты, в схеме.

Стабилитроны VD13, VD14 служат для ограничения напряжения и включаются в работу только при очень больших оборотах двигателя, когда экономия питания не очень важна. Желательно намотать такие катушки в магнете, чтобы эти стабилитроны включались только на самой верхушке, только на самом максимально возможном напряжении (в последней модификации стабилитроны не устанавливались, т.к. напряжение итак никогда не превышало 200 В). Две ёмкости: С4 и С5 для увеличения мощности искры, в принципе схема может и на одной работать.

Важно! Диод VD10 (КД411АМ) подбирался по импульсным характеристикам, другие очень грелись, не выполняли в полной мере свою функцию защиты от обратного выброса. К тому же через него идёт обратная полуволна колебания в катушке зажигания, что увеличивает длительность искры почти в два раза.

Ещё эта схема показала нетребовательность к катушкам зажигания — ставились любые какие были под рукой и все работали безупречно (на разные напряжения, под разные системы зажигания — прерывательные, на транзисторном ключе).

Резистор R6 предназначен для ограничения тока тиристора и для его чёткого запирания. Его подбирают в зависимости от используемого тиристора так, чтобы ток через него не мог превысить максимальный для тиристора и, самое главное, чтобы тиристор успевал запираться после разряда ёмкостей С4, С5.

Мостики VD11, VD12 выбираются по максимальному напряжению с катушек магнеты.

Катушек, заряжающих ёмкости для высоковольтного разряда, две (это решение также гораздо экономичнее и эффективнее чем преобразователь напряжений). Такое решение пришло потому, что катушки имеют разное индуктивное сопротивление и их индуктивные сопротивления зависят от частоты вращения магнитов, т.е. и от частоты вращения вала. Эти катушки должны содержать разное количество витков, тогда на малых оборотах будет работать в основном катушка с большим количеством витков, а на больших с малым, так как увеличение наводимого напряжения с увеличением оборотов будет падать на увеличивающемся индуктивном сопротивлении катушки с большим количеством витков, а на катушке с малым количеством витков напряжение растёт быстрее, чем её индуктивное сопротивление. Таким образом всё друг друга компенсирует и напряжение заряда ёмкостей в определённой степени стабилизируется.

Обмотка для зажигания в мопеде «Верховина-6» перематывается так:

  1. вначале замеряется напряжение на экране осциллоскопа с этой обмотки. Осциллоскоп нужен для более точного определения максимального амплитудного напряжение на обмотке, так как обмотку близко от максимума напряжения закорачивает прерыватель и тестер покажет некое заниженное действующее значение напряжение. Но ёмкости будут заряжаться до максимального амплитудного значения напряжения, да ещё и полным (без прерывателя) периодом.
  2. после, сматывая обмотку, надо посчитать количество её витков.
  3. разделив максимальное амплитудное напряжение обмотки на число её витков получаем сколько вольт даёт один виток (вольт/виток).
  4. разделив необходимые для нашей схемы напряжения на полученный (вольт/виток) получим количество витков, которые необходимо будет намотать для каждого из нужных напряжений.
  5. наматываем и выводим на клемник. Обмотка освещения остаётся прежней.

Используемые в схеме детали

Микросхема КР561ЛЕ5 (элементы 2 ИЛИ НЕ); интегральный ключ на МОП-транзисторе К1014КТ1А; тиристор ТС112-10-4; выпрямительные мосты КЦ405 (А,Б,В,Г), КЦ407А; диоды импульсные КД 522, КД411АМ (очень хороший диод, другие греются или работают гораздо хуже); светодиоды АЛ307 или другие; конденсаторы С4,С5 — К73-17/250-400В, остальные любого типа; резисторы МЛТ. Файлы проекта сложены сюда . Схема и описание — ПНП .

Обсудить статью СХЕМА БЛОКА ЭЛЕКТРОННОГО ЗАЖИГАНИЯ

Большинство владельцев «классики» от АвтоВАЗ, столкнувшись с контактной системой зажигания, которой оснащались автомобили выпуска прошлого века, стараются сменить ее на электронную. Такая доработка машины вполне может быть проведена самостоятельно. Этому и посвящена данная статья.

Что такое электронное зажигание

Термин «электронное зажигание» означает то же, что и «бесконтактное зажигание». Блок БСЗ собирается из электронных (полупроводниковых) компонентов, что и отражено в названии системы. «Бесконтактным» зажигание называется потому, что замыкание и размыкание низковольтной цепи производится электронным коммутатором за счет запирания и отпирания транзистора, а не контактом распределителя.

Система электронного зажигания ВАЗ 2107 для карбюраторной и инжекторной версии отличаются. Возможно, в этом причина ошибочного мнения о том, что электронное и бесконтактное зажигание – разные системы.

Преимущества бесконтактного зажигания ВАЗ 2107

  • Нет необходимости в обслуживании контактной группы (чистка, регулировка зазора).
  • Повышенная надежность за счет отсутствия контактной группы, подверженной износу.
  • Стабильное равномерное распределение искры по цилиндрам независимо от режима и условий работы двигателя.
  • Увеличение ресурса распределителя за счет устранения вибрации и биения оси при воздействии кулачков на контакты.
  • Экономия топлива, увеличение мощности и снижение вредных выбросов за счет более полного сгорания топлива в цилиндрах.
  • Надежный запуск двигателя при пониженной температуре за счет стабильного напряжения на свечах при низком напряжении аккумулятора и на малых оборотах.

Что входит в комплект электронного (бесконтактного) зажигания ВАЗ 2107

Бесконтактная система зажигания для ВАЗ включает:

  • трамблер;
  • катушку зажигания;
  • коммутатор;
  • комплект проводов.

Что необходимо для установки электронного (бесконтактного) зажигания

Кроме комплекта БСЗ понадобятся:

  • ключи на 8, 10, 13;
  • саморезы;
  • крестообразная отвертка;
  • дрель;
  • сверло.

Как установить электронное (бесконтактное) зажигание

Для избежания замыкания во процессе установки электронного зажигания, необходимо отключить провод «массы» с аккумулятора.

Последовательность установки узлов электронного зажигания не имеет особого значения. Можно посоветовать начать с замены трамблера:

Затем следует заменить катушку. Операция простая, но нужно учесть положение контактов «Б» и «К». Если на новой катушке оно отличается, необходимо провернуть ее относительно крепежа, чтобы контакты расположились аналогично старой.

Последним устанавливается коммутатор. Лучше сего расположить его между фарой и бачком омывателя. Закрепить коммутатор можно при помощи саморезов, под один из которых вывести «нулевой» провод. Радиатор устройства должен быть прислонен к кузову.

После установки комплекта необходимо внимательно проверить качество электрических соединений, соответствие подключений принципиальной схеме.

После завершения монтажа узлов зажигания можно подключить к аккумулятору провод «массы» и запускать двигатель.

Как отрегулировать электронное (бесконтактное) зажигание ВАЗ 2107

Лучше всего использовать для этого специальное оборудование. Если оно недоступно, можно отрегулировать зажигание «на слух». Перед регулировкой зажигания необходимо убедиться в правильности работы карбюратора и ускорительного насоса. Порядок регулировки такой:

  • прогреть двигатель;
  • отпустить гайку крепления трамблера;
  • медленно проворачивать трамблер (распределитель) при работающем двигателе вперед-назад, пока обороты не станут ровными и наиболее высокими;
  • затянуть гайку крепления;
  • разогнать автомобиль до 50 км/час на третьей передаче и, включив четвертую, резко надавить на газ. Должен возникнуть звук детонации, продолжающийся до тех пор, пока машина не увеличит скорость еще на 3-5 км/час. Если звук слышен дольше, трамблер необходимо отпустить, провернуть на 1 градус по часовой стрелке и затянуть снова. Если же при нажатии на «газ» обороты «проваливаются» или звука детонации вовсе не возникает, трамблёр нужно повернуть против часовой стрелки.

Регулировка зажигания без специальных приборов требует навыков и опыта. Если вы сомневаетесь в своих силах, лучше обратиться на СТО, имеющее необходимое оборудование.

  • Для обеспечения нормальной работы зажигания следует установить качественные свечи. Особенно это важно при работе автомобиля на газе.
  • Некачественные провода часто становятся причиной неисправности зажигания. Лучше использовать провода с силиконовой изоляцией, которая отличается лучшими диэлектрическими характеристиками и более долговечна.
  • Плохая фиксация колодки проводов часто становится причиной выхода из строя коммутатора. Чтобы избежать этого, необходимо проконтролировать качество посадки разъема.
  • На моделях ВАЗ старше 1994 года при установке электронного зажигания перестает работать тахометр. Устранить проблему можно, установив в цепь между катушкой и тахометром сопротивление на 1,2 кОм или конденсатор.

Единственным недостатком электронного зажигания на ВАЗ является его полная неработоспособность при поломке датчика холла. Это не слишком частое, но вполне возможное событие. Чтобы полностью обезопасить себя от этой проблемы, стоит купить запасной датчик и возить его с собой.

Электроника за рулем

Как известно электронные системы зажигания на двигателе показали себя с очень хорошей стороны- это и снижение расхода топлива, более уверенный запуск двигателя (особенно в холодное время) и лучшая приемистость. Здесь мы рассмотрим разновидности электронных систем зажигания , их устройство , способы диагностики и ремонта.

Итак. Может быть кто-то еще и помнит те времена когда на автомобилях еще не было электронного зажигания. В то время все выглядело предельно просто- контактная пара на распределителе (трамблере) и катушка (бабина). при включении зажигания напряжение бортовой сети +12 Вольт проходит через катушку и попадает на контактную пару. При повороте ротора в трамблере кулачок размыкает контакты, в этот момент в катушке происходит перепад напряжения и за счет ЭДС самоиндукции на высоковольтной обмотке возникает напряжение.
Таким контактным зажиганием снабжались все отечественные авто (да многие из них и сейчас бороздят просторы нашей родины. ) и при всей своей простоте у данной конструкции имеется один очень огромный недостаток- это постоянное подгорание контактов (иногда, правда значительно реже, износ кулачка).

В электронном зажигании работою высоковольтной катушки управляет электроника (ключ на мощном транзисторе), а вот сам датчик положения распределителя зажигания существует трех видов:

Рис 1. Разновидности электронного зажигания

1. Все та же контактная пара. По сути все осталось по старому- контакты размыкаются при помощи кулачка, с той лишь разницей что на самих контактах уменьшился ток и поэтому они стали более долговечными. На рисунке это вариант «А». Цифрами условно показаны: 1- контактная пара, 2- блок электронного зажигания, 3- распределитель зажигания.
2. Датчик в виде однофазного генератора переменного тока. Звучит мудрено, но на практике все выглядит очень даже просто- на статоре распределителя крепится постоянный магнит, корпусе распределителя- электромагнитный датчик (катушка), а на подвижном роторе- пластина из магнитомягкой стали с прорезями. При вращении ротора, начинает вращаться и пластина, открывая-закрывая магнитное поле между магнитом и датчиком.
На рисунке этот вариант обозначен буквой «Б».
3. Датчик Холла. В принципе здесь практически все так-же как и в предыдущем варианте: положение ротора распределителя определяется за счет изменения электромагнитного поля, только датчики сделаны немного по другому.

Как проверить исправность электронного коммутатора

Думается что вывод здесь напрашивается сам: чтобы проверить исправность блока электронного зажигания необходимо подать на его вход управляющие импульсы- просто заставить его подумать что он подключен к работающему распределителю. В качестве источника таких импульсов может послужить самый обыкновенный генератор прямоугольных импульсов с рабочей частотой 1- 200 Гц, правда к нему есть основное требование- он в обязательном порядке должен формировать импульсы не амплитудой не менее 8 Вольт.
Вот его примерная схема

Примечание : у нас на сайте есть еще один вариант Как проверить электронный коммутатор

Подключение устройства для проверки и диагностики следующее:

Обозначения на рисунке:
1. Генератор прямоугольных импульсов.
2. осциллограф для контроля выходящих импульсов
3. Стабилизатор сетевого напряжения (не обязателен)
4. Источник напряжения 12 Вольт мощностью не менее 20 Вт
5. Проверяемый блок
6. Катушка зажигания
7. Свеча зажигания.

Ну, вот, здесь примерно все ясно- давайте теперь рассмотрим все виды устройств в отдельности.

Электронное зажигание контактного типа

Данное устройство выпускалось под названием КТ-1 и было предназначено для установки в автомобили с механическими контактами в прерывателе (Москвич, Жигули, Волга).

Вот его полная схема, а рисунком ниже показаны осциллограммы в контрольных точках:

Система электронного зажигания КТ-1. схема электрическая

Начнем с того момента когда контакты в распределителе разомкнуты (рис а). В этот момент конденсатор С1 начинает заряжаться по цепи +12В,VD5, R4 , эмиттер-коллектор VT2, С2, база-эмиттер VT3, «масса».
Стабилизатор тока, собранный на транзисторах VT1, VT2 позволяет заряжаться конденсатору С2 стабилизированным током (рис б) и по этому при разной частоте размыкания контактов, на VT3 формируются импульсы одинаковой длительности.
Напряжение питания +12 Вольт через VD3, R8 попадает на базу транзистора VT4 и отпирает его. В результате VT5, VT6 запираются.

Как только контакты в прерывателе замкнутся, начинается процесс разряда конденсатора С2. Цепь VD3, C1, R8 закрывается и в этот момент VT3 запирается обратным потенциалом на С2. Высокий уровень с коллектора VT3 через диод VD4 подается на VT4 и держит его в открытом состоянии.
Когда напряжение на С2 достигнет уровня срабатывания, открывается транзистор VT3, а VD4 запирается, но так как контакты прерывателя разомкнуты через цепь VD3, R8, то транзистор VT4 будет продолжать удерживаться в открытом состоянии.
Положительный потенциал коллектора VT4 открывает транзисторы VT5, VT6 и через первичную обмотку катушки зажигания проходит ток.
В момент t3 транзистор VT4 переходит в открытое состояние, транзисторы VT5, VT6 запираются и резко убывающий ток в первичной обмотке вызовет возникновение искры на свече зажигания.
В период t3-t4 происходит до-зарядка конденсатора C2 до уровня напряжения источника питания, и как только контакты прерывателя разомкнуться, весь процесс повторится.

Эксплуатация данного блока зажигания выявила следующие недостатки:

1. При включенном долгое время зажигании при неработающем двигателе или при разомкнутых контактах, транзистор VT6 находится под постоянной нагрузкой что приводит к его перегревы и выходу из строя.
2. Работоспособность схемы очень зависит от правильности установки угла опережения зажигания.

коммутаторы 36.3734 и Б550

Эти коммутаторы предназначены для совместного использования с датчиком Холла и устанавливались на автомобили ВАз-2108, 09. Вместо них можно применить коммутатор 36.40.3734. Но и это еще не все- полная совместимость с импортными коммутаторами позволяет применять его и на зарубежных автомобилях марок FORD, OPEL, WOLKSWAGEN.

Схема коммутатора и осциллограммы

Осциллограммы в контрольных точках

Импульсы с датчика Холла поступают на вход 6 (рис А) и попадают на базу VT1. Транзистор VT1 инвертирует импульсы (рис в) и через R5 они проходят к базе VT2 (рис И).

Для избежания перегрева выходного ключа, в коммутаторе предусмотрена схема, закрывающая выходной каскад при отсутствии входного сигнала и при замкнутом состоянии датчика Холла:
На вход 6 микросхемы DA1.2 (рис Д) через VD4 поступает сигнал с выходного каскада, одновременно с этим на вывод 5 микросхемы DA1.2 поступает входной сигнал (рис Е). Каскад на DA1.2 собран по схеме интегратора, импульсы на его выходе имеют трапециедальную форму (рис Ж) и они поступают на компаратор DA1.3.
Если импульсы не проходят на входы DA1.2 то компаратор DA1.3 на выходе 8 выдаст высокий уровень и в результате VT2 откроется, а выходной каскад закроется.

В динамическом режиме микросхема DA1.3 формирует прямоугольные импульсы (рис З). Микросхема DA1.4 выполняет роль компаратора: как только напряжение на резисторах R35, R36 превысит допустимое, компаратор сработает и откроет транзистор VT2. При этом выходной каскад на транзисторах VT3, VT4 закроется.

Эксплуатация данного коммутатора показала его достаточную надежность. Если и происходили случаи выхода из строя выходного транзистора, то в основном по вине неисправного генератора или замкнутой катушки зажигания.
Единственный недостаток выявленный в процессе эксплуатации- перебои в работе на повышенных оборотах двигателя, поэтому автором было предложено ввести в схему дополнительную цепь- резистор R* (вывод 5 микросхемы DA1.2).

коммутатор 1302.3734

Коммутатор 13.3734-O1

Показанные выше два вида коммутаторов применяются в бесконтактных системах зажигания с применением генератора тока. (что это такое смотрим в начале статьи).
Такие системы зажигания применялись в автомобилях Волга, УАЗ, РАФ, Газель. В них чаще всего также выходит из строя ключевой выходной транзистор. Причем как выяснилось в большинстве коммутаторов под транзистором отсутствовала термо-отводящая паста, так что замене транзистора следует эту пасту нанести.

Транзисторы в коммутаторах можно менять на близкие по параметрам: КТ898А, КТ8109А, КТ8117А

При подготовки материала была использована информация из журналов

Использовать электронное зажигание на ВАЗ 2107 оказывается намного эффективнее, нежели контактное. Чтобы уяснить, какие преимущества появляются при установке бесконтактной системы, необходимо вкратце рассмотреть историю ее развития. И начать, конечно же, стоит с контактной системы, именно с нее и началось развитие. Также необходимо внимательно изучить основные компоненты зажигания, определить, какие функции они осуществляют. Стоит также отметить, что установка электронного зажигания позволяет добиться более высоких показателей мощности и надежности всего автомобиля.

Основные элементы систем зажигания

К основным элементам можно отнести такие, как свечи зажигания, бронепровода, катушки. Это узлы, которые присутствуют в любой системе. Правда, у них имеются некоторые отличия. Конечно, свечи используются на всех двигателях одинаковые. Если речь идет об автомобилях ВАЗ. Бронепровода могут быть как в резиновой, так и в силиконовой оболочке. У них есть как плюсы, так и минусы. Например, силиконовые больше подвержены разрушению внутреннего токопроводящего слоя.

А провода в резиновой оболочке плохо переносят низкие температуры — они становятся твердыми, теряют свою эластичность. несмотря на то, что обладают одинаковыми функциями, тоже отличаются. Если в контактной системе напряжение пробоя должно быть 25-30 кВ, то электронная система зажигания работает при значении этого параметра порядка 30-40 кВ. И если в этих двух системах используется одна катушка, то микропроцессорные оснащаются двумя или четырьмя. По одной катушке на 1-2 свечи.

Контактная система

Такая конструкция была популярно вплоть до середины 90-х годов прошлого века. Но она ушла в небытие, так как морально устарела. В ее основе находится распределитель зажигания, в котором ротор имеет небольшой участок, выполненный в виде кулачка. С его помощью приводится в движение прерыватель — две металлические пластины, изолированные друг от друга. На них есть контакты, которые замыкаются и размыкаются под действием кулачка.

Надежность работы данной системы зависит напрямую от состояния этой контактной группы. Дело в том, что контакты коммутируют напряжение 12 Вольт, следовательно, риск того, что они подгорят, очень высокий. Также они соприкасаются, следовательно, имеет место быть механическое воздействие. Отсюда уменьшение толщины контактов, следовательно, увеличение зазора между ними. По этой причине нужно постоянно следить за состоянием контактной группы. А вот электронная система зажигания позволяет избавиться от таких мелких недочетов.

Контактно-транзисторная

Немного совершеннее данная система, но до идеала ей все равно еще далеко. Как и в прошлом типе, здесь имеется и трамблер, и контактная группа. С небольшим отличием — она коммутирует малое напряжение, меньше 1 Вольта. Больше для управления электронным ключом, собранным на полупроводниковом транзисторе, и не требуется. Преимущество данной системы становится понятным из вышесказанного. Но недостаток все равно остается — присутствует механическое воздействие. Следовательно, контакты постепенно изнашиваются и требуют замены. Долго не поездить без своевременного техобслуживания. Хоть это и почти электронное зажигание на ВАЗ 2107, но до БСЗ еще далеко ему.

Бесконтактная система

А вот бесконтактная система уже ближе к идеалу. В ней нет контактной группы, которая является наиболее уязвимым местом. Следовательно, обслуживать ее не потребуется. Все функции прерывателя возложены на работающий на эффекте Холла. Он монтируется внутри распределителя, на том самом месте, на котором стояла группа контактов. Для нормальной работы системы зажигания необходимо, чтобы датчик правильно функционировал. А он не сможет работать без металлической юбки с прорезями, которая вращается в области его активного элемента. Схема электронного зажигания имеет высокую степень надежности во многом благодаря тому, что в ней нет механического взаимодействия элементов.

Датчик Холла

Когда работает двигатель, вращение передается на ось трамблера. В верхней его части вращается бегунок, который распределяет высокое напряжение от катушки к свечам зажигания. В нижней части находится упомянутая ранее металлическая юбка. Она расположена таким образом, что вращается в области действия датчика. Следовательно, последний, под воздействием металла, выдает импульс. И таких скачков за один оборот происходит четыре (по числу цилиндров). Далее этот импульс поступает к коммутатору. Установка электронного зажигания проводится довольно быстро, так как содержит небольшое число элементов. Среди них стоит выделить коммутатор, но о нем будет рассказано позже.

Микропроцессорная система

Данный тип системы является наиболее совершенным. Причина в том, что она работает путем обработки данных с множества датчиков. Она активно применяется только на инжекторных двигателях, так как только в них можно осуществить управление топливоподачей. Производится контроль абсолютно всех параметров работы двигателя. Сигналы с датчиков поступают на электронный блок управления — мозг всей системы. Он изготовлен на основе микропроцессора, который может совершать тысячи операций в секунду. Схема электронного зажигания такого типа довольно сложна, а также требует программирования. Ведь микропроцессор должен знать, что от него желает пользователь получить при определенном типе входного сигнала.

Датчики в микропроцессорной системе

Как было сказано, в данном типе системы зажигания необходимо анализировать все параметры. В частности, с повышением требований к токсичности, вовсю начали использоваться лямбда-зонды. Микроконтроллерная схема электронного зажигания ВАЗ позволяет подключать несколько типов считывающих устройств. Конечно, использование лямбда-зондов в автомобилях спорно, ведь стоит посмотреть на то, сколько вредных газов и жидкостей выбрасывается предприятиями в окружающую среду. Но законодателей в Европе это волнует в последнюю очередь. Инжекторные семерки соответствуют нормам токсичности Евро-2 и Евро-3. К сожалению, на данный момент действуют нормы Евро-6.

Для нормальной работы двигателя проводить контроль скорости, частоты вращения коленвала, воздуха, поступающего в топливную рампу. Также проводится анализ содержания СО в выхлопной системе, определяется положение заслонки дросселя относительно начальной точки. Кроме того, ежесекундно определяется наличие детонации в двигателе, производится регулировка И все это делает система, которая изготовлена на микропроцессоре. Тысячи операций он проводит, чтобы своевременно подать сигналы на исполнительные механизмы (например, электроклапаны форсунок). Так как установить электронное зажигание такого типа довольно сложно на карбюраторные двигатели, стоит все-таки остановиться на использовании БСЗ.

Коммутатор

Этот элемент является предшественником микропроцессорного электронного блока управления. С помощью коммутатора производится подача сигнала на катушку зажигания. Единственный датчик, который участвует в его работе — Холла. С его помощью определяется момент начала подачи напряжения. Правда, уровень сигнала, который поступает от датчика Холла, очень маленький. Если его подать на высоковольтную катушку, то на выходе напряжения для разжигания искры окажется недостаточно. Между прочим, электронное зажигание 2106 может без труда быть смонтировано на весь модельный ряд так как его установка одинакова.

Поэтому возникает необходимость применения буферного узла — усилителя. Именно такие функции и исполняет коммутатор. При его работе выделяется большое количество тепла, поэтому к установке блока следует подойти со всей ответственностью. Его нужно монтировать так, чтобы задняя его часть максимально плотно прилегала к элементу кузова автомобиля. В противном случае возможен быстрый выход из строя полупроводниковых элементов системы. Штекер, при помощи которого производится подключение коммутатора, должен иметь защиту от попадания пыли и влаги.

Как установить распределитель

Теперь стоит поговорить о том, как смонтировать и настроить электронное зажигание на 2107. Установка распределителя БСЗ на классику аналогична процедуре, проводимой при монтаже простого трамблера контактной системы. Сначала выставляете шкив по меткам на блоке двигателя. Там три метки, которые определяют величину угла опережения — 0, 5, 10 градусов. Устанавливаете шкив напротив той метки, которая соответствует значению 5 градусов. Именно оно является наиболее оптимальным при работе на бензине с октановым числом 92.

Теперь, сняв крышку распределителя, устанавливаете бегунок таким образом, чтобы он оказался напротив вывода, который идет к свече первого цилиндра. Теперь остается только установить корпус трамблера на свое место и наживить гайку его крепления. Далее ставите на место крышку распределителя, зажимаете ее пружинными фиксаторами. Вот и все, первоначальная установка зажигания завершена, теперь можно приступить к точной настройке.

Установка угла опережения

Сразу стоит отметить, что регулировка «на слух» может проводиться, но только в самых экстренных случаях. Например, если поломка застала вас в пути и необходимо доехать до места проведения ремонта. В других случаях нужно воспользоваться хотя бы простыми средствами — например, индикатором на светодиоде. Лучше всего, если электронное зажигание на ВАЗ 2107 будет регулироваться с использованием стробоскопа или мотортестера.

Если имеется у вас стробоскоп, то задача по настройке угла опережения зажигания упрощается во много раз. Между прочим, такое устройство можно собрать даже из светодиодного фонарика. Устанавливаете управляющий вывод с на бронепровод первого цилиндра. Теперь нужно направлять луч стробоскопа на шкив коленвала. Конечно, двигатель необходимо завести. Вращая корпус трамблера, добиваетесь того, чтобы метка на коленчатом валу проходила напротив соответствующих ей засечек на блоке четко в момент вспышки.

Что дает установка БСЗ на семерку?

А вот сейчас начнется расхваливание бесконтактной системы. Ни для кого не секрет, что электронное бесконтактное зажигание намного лучше своего предшественника. Причина тому — отсутствует необходимость в частом контроле распределителя и прерывателя. А что нужно современному водителю? Чтобы его машина ездила, да не требовала от него знаний в устройстве автомобиля и его систем. Заметьте, чем современнее машина, тем меньше владелец вмешивается в ее работу. Максимум — это замена жидкостей и фильтров.

И БСЗ сделала шаг навстречу водителям, она избавила их от нужды постоянно проверять зазоры, регулировать угол опережения, чистить контакты. Сейчас достаточно большое число людей, которые коробку скоростей от поршня отличить могут с большим трудом. Сможет ли он сделать все вышеописанные процедуры? Именно. Следовательно, электронное бесконтактное зажигание позволяет увеличить надежность автомобиля. А необходимость в частых регулировках отпадает.

Выводы

Анализируя все «за» и «против», можно прийти к одному выводу — чем современнее система зажигания, тем она надежнее и эффективнее. Но если у вас карбюраторная семерка, то для монтажа микропроцессорной системы вам потребуется модернизировать топливоподачу. Для этого нужно установить насос, рампу, форсунки, электронный блок управления, а также кучу датчиков для обеспечения нормальной работы. Но более простой выход — это просто смонтировать электронное зажигание на ВАЗ 2107. И по цене не очень много, и по затратам времени тоже.

Работа любого бензинового двигателя внутреннего сгорания была бы невозможна без специальной системы зажигания. Именно она отвечает за воспламенение смеси в цилиндрах в строго определенный момент. Различают несколько возможных вариантов:

  • контактная;
  • бесконтактная;
  • электронная.

Одинаковы элементы разных систем зажигания автомобиля

Незаменимым и наиболее востребованным является наличие аккумуляторной батареи. Даже в отсутствие или при поломке генератора при помощи неё можно ещё некоторое время продолжать движение. Генератор также есть неотъемлемой частью, без которой нормальное функционирование любой из систем невозможно. Свечи зажигания, бронепровода, высоковольтная и управляющие элементы дополняют любую из упомянутых систем. Основное различие меду ними заключается в типе, управляющего моментом зажигания и отвечающего за искрообразование устройства.

Контактный прерыватель-распределитель зажигания

Это устройство инициирует возникновение искры высокого, до 30000 В, вольтажа на контактах свечей зажигания. Для этого он соединяется с высоковольтной катушкой, благодаря которой происходит образование высокого напряжения. Сигнал на катушку передается при помощи проводов от специальной контактной группы. При её размыкании кулачковым механизмом происходит образование искры. Момент её возникновения должен строго соответствовать требуемому положению поршней в цилиндрах. Это достигается благодаря четко рассчитанному механизму, передающему вращательное движение на прерыватель-распределитель. Одним из недостатков устройства является влияние механического износа на время возникновения искры и на её качество. Это влияет на качество работы двигателя, а значит может требовать частых вмешательств в регулировку его работы.

Бесконтактное зажигание

Этот тип устройств не зависит на прямую от размыкания контактов. Основную роль в моменте искрообразования здесь играет транзисторный коммутатор и особый датчик. Отсутствие зависимости от чистоты и качества поверхности контактной группы может гарантировать более качественное искрообразование. Однако этот тип зажигания тоже использует прерыватель-распределитель, который отвечает за передачу тока на нужную свечу в нужный момент.

Электронное зажигание

В этой системе воспламенения смеси полностью отсутствуют механические движущиеся части. Благодаря наличию специальных датчиков и особого блока управления, образование искры и момент её раздачи на цилиндры выполняются гораздо более точно и надежно, чем у вышеупомянутых систем. Это дает возможность улучшить работу двигателя, увеличить его мощность и снизить расход топлива. Кроме того, радует и высокая надежность устройств такого типа.

Характеристика высоковольтных проводов зажигания для авто, проверка и ремонт

Высоковольтные провода зажигания: доверяй, но проверяй

Высоковольтные провода выполняют важную функцию — они осуществляют передачу импульса, проходящего от катушки зажигания к свечам. При выходе этих проводов из строя запустить мотор у водителя не получится, поэтому мы предлагаем вам узнать основную информацию об этих компонентах.

Требования к авто «высоковольтникам»

Поскольку высоковольтные провода располагаются в моторном отсеке, в первую очередь они должны быть наиболее устойчивы к агрессивной среде. Какое бы напряжение по ним не передавалось, высоковольтники всегда должны работать в нормальном режиме при температурах от -50 до +250 градусов, выполняя свои функции. Также такие кабеля должны полностью исключать утечку тока. Если высоковольтные провода будут низкокачественными или неисправными, со временем они могут привести к поломке тех или иных компонентов авто, а мотор при этом начнет троить.

Рекомендуется к прочтению  Раннее зажигание, признаки и причины

Если происходит утечка тока либо увеличивается сопротивление, в итоге это приведет к тому, что сила импульса будет снижена, соответственно, мотор может не просто троить, но и зависать на повышенных оборотах. Кроме того, искра может вовсе отсутствовать, в частности, если на свечах зажигания имеется нагар или налет. Соответственно, снижается и динамика транспортного средства, может даже увеличиться расход топлива.

Структура автомобильного высоковольтного кабеля

Устройство высоковольтных проводов зажигания

Высоковольтные провода авто состоят из специальной токопроводящей жилы, защитного слоя (изоляции), контактов, а также колпачков. Защитный слой может быть одно- либо многослойным диэлектриком. Его предназначение заключается в том, чтобы предотвратить утечку тока. Кроме того, защитный слой, которым обладают высоковольтные провода, должен защищать саму жилу от влажности, попадания масла или топлива, токсичных паров, а также воздействия высоких температур.

Что касается металлических контактов, то они позволяют обеспечить оптимальное соединение токопроводящей жилы с нужными контактам свечей, а также катушки. Либо же это может быть крышка распределителя.

Требования к контактам таковы:

  • он должен быть максимально надежным с токопроводящей жилой;
  • элемент должен быть максимально надежно зафиксирован на самом кабеле;
  • фиксация с выводами свечей должна быть максимально надежной;
  • важна устойчивость компонентов к коррозии, чтобы контакт был наиболее надежным.

Новые ВП для автомобиля

Колпачки, которыми оснащены высоковольтные провода зажигания авто, предназначены для защиты соединений самого кабеля с выводом катушки. Колпачки позволяют предотвратить воздействие агрессивной среды, также они способствуют предотвращению утечки.

Какими должны быть эти элементы:

  1. Важно, чтобы они были наиболее плотно соединены с другими компонентами системы, для предотвращения попадания влаги и грязи на контакты. Колпачки устанавливаются достаточно плотно, поэтому после долгого использования их порой бывает проблематично извлечь.
  2. Эти элементы должны быть наиболее устойчивы к перепадам температур, а также к жаре или холоду.

Эти компоненты — силиконовые, также в их составе есть резина. Силиконовые колпачки могут быть оснащены специальным резистором для подавления помех, а также металлическим экраном для их уменьшения.

Возможные неисправности и их признаки

Начнем с признаков неисправности, которые помогут определить поломку своими руками:

  • первый признак, который говорит о необходимости ремонта своими руками — в сырую погоду мотор авто заводится с большим трудом;
  • двигатель авто может в принципе глохнуть;
  • еще один признак, который влечет за собой ремонт своими руками — мотор авто работает неустойчиво на средних либо высоких оборотах;
  • мощность ДВС падает;
  • как сказано выше, одним из немаловажных признаков является увеличение расхода горючего.

Если провода зажигания авто неисправны, то обычно это связано с утечкой тока либо разрывом кабеля. Как правило, разрыв происходит в том месте, где контакт соединяется с жилой и прочими компонентами.

Обычно проблема неисправности и необходимости ремонта своими руками в авто появляется:

  • в результате демонтажа кабеля;
  • если соединение с выводами тех или иных компонентом системы зажигания достаточно плохое;
  • если произошло окисление либо разрушение структуры.

В том месте, где нарушается контакт, структура может сильно греться и искриться. Если вовремя не решить неисправность, то проблема может усугубиться, что приведет к выгоранию контактов либо же самой жилы. Что касается утечки, то она обычно появляется на загрязненных кабелях, через свечи или катушку либо в случае повреждения защитного слоя или колпачков.

ВВ кабеля для автомобиля

Сопротивление высоковольтных проводов зажигания измеряется мультиметром — полученные показатели могут быть различными, однако в любом случае они должны быть не более 20 кОм. В том случае, если один из компонентов продемонстрировал неверное значение, в отличие от других, то это свидетельствует о его неисправности. Соответственно, потребуется ремонт своими руками.

В зимнее время года из-за температуры кабеля могут стать более жесткими, соответственно, вероятность того, что защитный слой или колпачки будут повреждены, становится высокой. Регулярные вибрации от мотора способствуют расшатыванию соединений, что в принципе ухудшает контакт. Если же температура в моторном отсеке слишком высокая, то это приведет к выходу из строя самих колпачков, которые расположены в непосредственной близости к мотору.

Выявить неисправность защитного слоя можно на слух — в этом случае вы услышите щелчки, либо визуально — на месте утечки будет проскакивать искра, особенно это хорошо видно ночью. Если контакт в наконечниках будет хорошим, то это предотвратит потерю тока, который передает на свечи. Так что для обеспечения нормальной работы системы необходимо время от времени осуществлять диагностику наконечников и кабелей в целом (автор видео — Автоэлектрика ВЧ).

Критерии выбора

Какие лучше выбрать высоковольтные провода? Перед приобретением необходимо внимательно изучить упаковку. Если вы не знаете, какие лучше выбрать высоковольтники, то ознакомьтесь с сервисной книжкой — возможно, там есть рекомендации для вашего автомобиля. Если нет — то поищите их на упаковке от высоковольтников.

В том случае, если на этикетке нет информации касательно производителя, то лучше не покупать такой товар. Кроме того, при изготовлении подделок подпольные компании часто допускают элементарные ошибки в написании слов. Если вы их заметили, то перед вами — подделка. Желательно выбрать такие кабеля, могли бы выдерживать не только низкие или высокие температуры, но и перепады.

Диагностика высоковольтных проводов

Как производится проверка высоковольтных проводов зажигания в автомобиле своими руками?

Вариантов у вас есть несколько:

  1. Для первого потребуется лампа и кусок проволоки. Сначала необходимо оголить края провода, после чего один конец проволоки фиксируется на минусе аккумулятора автомобиля, а второй подводится к контакту лампы. Аналогичные действия своими руками необходимо произвести с другим концом высоковольтника — он подсоединяется к плюсовому выходу аккумулятора, а второй выход соединяется с корпусом лампы. В том случае, если лампа загорелась, то диагностика своими руками говорит о том, что сам высоковольтник работоспособен.
  2. Еще один вариант диагностики своими руками — без использования лампы, но вам потребуется сам провод. Для начала необходимо завести двигатель, при этом обороты должны быть небольшими. Если мотор не заводится, то необходимо, чтобы помощник крутил стартер. Сам высоковольтник необходимо поднести к массе двигателя — при попытке запустить двигатель между контактом провода и массой авто должна проскакивать искра, если ее нет, то высоковольник нужно менять или произвести диагностику свечей.

Видео «Что необходимо знать о неисправностях высоковольтных проводов»

Основная информация по этому вопросу представлена ниже (автор видео — Наиль Порошин).

Высоковольтные провода зажигания: способы проверки, виды неисправностей и ремонт

Роль высоковольтных проводов (ВВ) в системе зажигания автомобиля переоценить сложно: именно они «доставляют» напряжение от катушки или специального модуля к свечам. Стабильная работа двигателя, его пуск, воспламенение рабочей смеси невозможно без полностью исправных ВВ. Какие неисправности с ними случаются чаще всего, как проверить высоковольтные провода на авто, когда нужна их замена – об этом речь пойдет ниже.

Устройство и предназначение ВВ

Конструкция этих элементов системы зажигания несложная: внутри изоляционного слоя располагается токопроводящий многожильный провод, с двух сторон заканчивающийся металлическими наконечниками, защищенными пластиковыми или прорезиненными колпачками. Все составляющие ВВ выполняют свои функции:

  • расположенный внутри провод обеспечивает прохождение высокого напряжения на свечи, что обеспечивает воспламенение топливно-воздушной смеси;
  • изоляция минимизирует утечки тока, предотвращает его попадание на другие части двигателя, обеспечивает нормальную работу ВВ при температурных перепадах, защищает токопроводящую жилу от попадания на нее влаги и агрессивных веществ;
  • задача металлических наконечников – обеспечение надежного контакта с электродами свечей и катушкой зажигания;
  • колпачки (силиконовые, эбонитовые, резиновые или пластиковые) защищают контакты от внешнего негативного воздействия – пыли, грязи, а также играют роль подавителя помех (при наличии специального резистора).

Многожильный внутренний провод может быть выполнен в нескольких вариантах:

  • из хлопчатобумажной пряжи, обработанной сажевым раствором (в ряде случаев сверху ее усиливают капроновой оплеткой);
  • из полимеров с пропущенной внутри упрочняющей нитью;
  • из стекловолокна, обработанного графитовой посыпкой.

Для изготовления изоляции применяют различные типы пластмасс (чаще всего ПВХ), резину, силикон и их комбинации. Иногда снаружи провода оборачивают х/б, капроновой или полимерной оплеткой.

Несмотря на простое устройство, свечные провода играют важную роль в обеспечении бесперебойной работы двигателя машины и его пуске. Благодаря им от катушки зажигания к свечам поступает высокое напряжение, образующее искру, которая в нужные моменты воспламеняет горючую смесь. Поэтому любая нарушение целостности ВВ или их дефект (если изделие новое) ведет к неэффективной работе мотора и представляет опасность для бортовой электроники.

Признаки неисправности высоковольтных проводов

Симптомы, проявляющиеся при плохой работе ВВ, напоминают сбои двигателя при ненормальном функционировании свечей зажигания. Если изоляция высоковольтного провода (хотя бы одного) нарушена, то двигатель плохо заводится, дергается при движении на малых оборотах (иногда даже глохнет), при нажатии на педаль акселератора плохо набирает обороты, общая работоспособность силового агрегата падает. Еще один признак – перерасход горючего. Это связано с тем, что топливо, предназначенное для цилиндров двигателя, не получает импульса зажигания, сгорает не полностью и «вылетает» в глушитель. С этим связано высокое содержание углеводорода в выхлопных газах, что отрицательно влияет на окружающую экологию.

Также стоит отметить негативное влияние неисправных высоковольтных проводов на электронику машины и радио (оно будет работать с помехами). Датчики станут давать неправильные показания, из-за этого электронный блок управления (ЭБУ) станет направлять в системы управления двигателем неверные команды: его синхронная работа нарушится, бортовой компьютер будет показывать ошибки по пропускам зажигания. И последний момент: запах озона в подкапотном пространстве свидетельствует о том, что произошел пробой высоковольтного провода (одного или нескольких).

Виды повреждений и причины их возникновения

Один из наиболее распространенных изъянов возникает, когда токопроводящая жила сломана, т. е., произошел ее разрыв. Обычно он находится там, где металлические наконечники ВВ контактируют с катушкой, либо в местах соединения со свечей. В результате в проблемной зоне образуется ненужная искра – электрический разряд, создающий паразитный электромагнитный импульс и снижающий напряжение. Именно он является виновником сбоев в работе электроники автомобиля: датчиков и ЭБУ. Основные причины повреждения провода:

  • неаккуратное обращение с ВВ при сильном морозе (кабели становятся жесткими и легко могут сломаться);
  • слишком частое снятие и установка высоковольтных проводов, особенно, если они невысокого качества.

Еще одна часто встречающаяся неисправность – разрыв (полный или частичный) электрической цепи. В итоге на электрод подается недостаточное напряжение, либо оно отсутствует вовсе. Это можно определить по нагару свечи, который будет черным и влажным. Другие причины и неисправности:

  1. Утечка электроэнергии обычно связана с загрязненной катушкой зажигания, крышкой распределителя (модулем), а также сломанными колпачками, которые в этом случае теряют свои диэлектрические свойства.
  2. Отсутствие достаточного напряжения может быть обусловлено тепловым повреждением свечных колпачков, расположенных ближе других элементов зажигания к горячему мотору. Однако такая причина неисправности ВВ обычно вызывается их низким качеством.
  3. Ухудшение электрического контакта может произойти из-за постоянной вибрации двигателя, в итоге которой соединительные места разбалтываются.
  4. Длительный эксплуатационный срок влияет на состояние изоляционного слоя, который постепенно растрескивается из-за высокой температуры, паров масла, бензина, антифриза и перестает выполнять свою главную функцию – не допускать утечки тока. Повредиться изоляция может и из-за превышения максимально допустимого уровня напряжения, выдаваемого катушкой зажигания (если пробивается ее первичная обмотка). Когда трещины достигают токопроводящей жилы, происходит пробой на «массу» в результате чего высоковольтный импульс до свечи не доходит.

Проверка высоковольтных проводов зажигания

Чтобы убедиться в стопроцентной работоспособности системы зажигания, необходимо знать, как проверить высоковольтные провода на автомобиле. Это можно сделать визуально, с помощью отрезка провода или посредством прибора мультиметра. Каждый из способов стоит рассмотреть подробнее.

  1. Внешний осмотр. Проводить его требуется в помещении с приглушенным светом. Для этого откройте капот автомобиля и пустите двигатель. Внимательно осмотрите в темноте провода: если по ним или в местах соединений с катушкой, распределителем (модулем), свечами проскакивает искра, то ВВ необходимо заменить.
  2. Использование отрезка провода. Очистите оба его конца от изоляции. Один из них надежно прикрепите к «массе» машины. Далее затемните гараж и заведите мотор. Вторым концом провода осторожно проведите вдоль каждого высоковольтного провода. Наличие искры свидетельствует о необходимости покупки новых ВВ.

Использование мультиметра

Это наиболее сложный, но и точный метод, позволяющий проверить работоспособность высоковольтных проводов, поэтому его необходимо рассмотреть отдельно. Чтобы правильно работать с тестером, сначала его нужно подготовить:

  • переключите прибор в режим измерения сопротивления (омметр);
  • вытащите один из ВВ, отсоединив его от модуля зажигания (распределителя) и свечи цилиндра;
  • подсоедините щупы мультиметрак концам провода и оцените показания тестера.

Технические параметры, в т. ч. и сопротивление должны быть указаны на изоляции высоковольтного провода. Если он полностью исправен, значение будет находиться в диапазоне 3,5-10 кОм (параметр зависит от компании-производителя). Если показания больше или меньше этих границ, то провод нужно заменить.

Стоит отметить, что сопротивление каждого кабеля будет отличаться, что связано с его длиной. Рекомендуется бронепровода зажигания устанавливать комплектом. Ниже представлены данные ВВ наиболее известных фирм:

  • Cargen: сопротивление около 9 кОм.
  • Tesla: 6 кОм.
  • Slon: 4 кОм для провода первого цилиндра, с постепенным возрастанием до 7 кОм для последнего.

Ремонт высоковольтных проводов

Лучший вариант – приобретение нового комплекта ВВ. Но что делать, если неисправность случилась в пути, и рядом нет ни магазинов, ни автосервисов? Если видно, что повреждена изоляция, то дефектное место можно замотать изолентой, чтобы не было пробоев на «массу». Проблема может крыться и в наконечнике: его необходимо плотнее обжать вокруг автомобильного провода зажигания. Но в любом случае ремонт высоковольтных проводов — временная мера: поход в магазин неизбежен.

Высоковольтные провода на свечи зажигания

Каждый, даже далекий от тонкостей автомеханики автолюбитель, знает, что ни один двигатель не может работать без системы зажигания. При этом основными элементами системы зажигания является коммутатор (или трамблер), катушка и свечи зажигания. Однако в данной статье мы поговорим о другом, не менее важном компоненте системы зажигания – высоковольтных проводах. Высоковольтные провода зажигания ВАЗ, как и высоковольтные провода в автомобиле от любого другого производителя, предназначены для передачи высокого напряжения к свечам зажигания.

Абсолютно все провода для свечей зажигания классифицируются в зависимости от конструктивных особенностей. В частности, все провода разделяют в зависимости от материала, из которого изготовлена токопроводящая жила, а также материала, из которого выполнена изоляция. Рассмотрим разновидности проводов более детально.

Классификация по типу проводника

По типу токопроводящей жилы провода на свечи зажигания могут быть:

  1. С медным проводником. Такие кабеля считаются классическими и обладают очень низким сопротивлением – около 0,2 Ом/м. Основным недостатком является значительный уровень помех, возникающих в процессе работы системы зажигания.
  2. С проводником из неметаллического материала. Конструктивно такой провод выполнен из льняной нити, кевлара, стекловолокна с графитовой пропиткой. При этом сердечник заключен в специальную оболочку из проводящей электрический ток пластмассы. Распределенное сопротивление составляет около 2 кОм/м. Использовать такие кабели следует только с помехоподавляющими устройствами.
  3. С неметаллической токопроводящей жилой, конструктивно выполнены практически аналогично выше описанному проводу. Отличительной особенностью является более высокое распределенное сопротивление – около 40 кОм/м. Такие кабели могут использоваться без помехоподавляющих устройств.

Провода зажигания

Классификация по материалу изоляции

Как уже упоминалось выше, провода к свечам зажигания классифицируются в зависимости материала, из которого выполнена изоляция. В бюджетных кабелях изоляция чаще всего изготавливается из поливинилхлоридного материала. Такая изоляция способна выдерживать температуру в пределах -20 — +120 градусов.

Более качественной считается изоляция из так называемого эластомера. Основной отличительной особенностью кабелей с такой изоляцией является высокая стойкость к негативному воздействию химически агрессивных веществ. Диапазон температур, при которых эластомер не утрачивает своих качеств, лежит в пределах -30 — +180 градусов.

Наиболее высокими характеристиками обладает кабель с силиконовой изоляцией. Силиконовая изоляция способна выдерживать температуру в пределах -50 — +250 градусов и обладает наибольшей долговечностью по сравнению с другими видами изоляции. Именно провода с такой изоляцией рекомендуются многими автопроизводителями, в том числе и отечественными.

Какое должно быть сопротивление высоковольтных проводов зажигания

Многие автолюбители считают, что чем меньше сопротивление проводов зажигания, тем меньшим будет уровень потерь, и тем более эффективно будет функционировать система зажигания. Действительно ли такие утверждения обоснованы и верны?

Признано, что чем меньше сопротивление токопроводящей жилы, тем более высоким является негативное воздействие электромагнитных помех на работу силовой установки автомобиля. В этой связи очень важно чтобы комплект высоковольтных кабелей по уровню помехоподавления соответствовал установленным нормам. Если взять в качестве примера автомобили семейства ВАЗ, то в их технических руководствах утверждено, что в зависимости от длины сопротивление провода должно быть в пределах 3,5-10 кОм.

В то же время чем меньшим будет сопротивление всей лини зажигания, тем более эффективно будет работать силовой агрегат автомобиля. Недаром же в спортивных автомобилях используются провода с практически нулевым сопротивлением. Если же вспомнить о помехах, то сопротивления свечи вполне достаточно.

Высоковольтные провода зажигания

Признаки неисправности высоковольтных проводов зажигания

Свидетельством того, что кабели зажигания пришли в негодность, являются следующие признаки:

  • трудности с запуском двигателя, особенно в сырую погоду;
  • на средних и высоких оборотах отмечается нестабильная работа двигателя;
  • двигатель не развивает полную мощность;
  • наблюдается повышенный расход топлива.

Как правило, при сильном износе на изоляции провода возникает множество микротрещин, из-за которых возникает утечка тока. В результате этого провод не способен передать к свече зажигания ток, который по своей величине достаточен для ее нормальной работы. Таким образом существенно повышается время выработки искры и нарушается правильная работа цилиндров двигателя.

Достаточно часто встречаются и случаи, когда провода повреждаются в результате соприкосновения с какими-либо элементами двигателя. Также возможны и ситуации потери герметичности колпачка, и как следствие – окисление контактов и утечки тока. Регулярная очистка контактов является обязательной процедурой, особенно при эксплуатации автомобиля в сложных климатических условиях.

Каким образом автовладелец может проверить провода на утечку? На самом деле все очень просто: в темном гараже открываем капот и заводим двигатель. Места утечек будут достаточно ярко светиться синим светом. Существует и несколько другой способ: вместо свечи устанавливается разрядник (два электрода в одном корпусе) и по нему контролируется энергия, подаваемая на свечу.

Для того чтобы повысить долговечность изоляции рекомендуется следить и постоянно поддерживать ее в чистоте. Постоянной проверке и очистке подлежат и контакты между свечами зажигания и каждым проводом.

Высоковольтные провода

Как проверить провода свечей зажигания мультиметром

В первую очередь любая диагностика начинается с детального внешнего осмотра. Очень часто одного лишь визуального осмотра достаточно для того, чтобы выявить износившийся кабель. Наличие значительных дефектов в виде, например, трещин и переломов на изоляции, уже является подтверждением необходимости замены провода.

Если же визуальный осмотр показал, что изоляция в нормальном состоянии и имеются обоснованные сомнения по поводу исправности токопроводящей жилы, можно произвести проверку при помощи мультиметра.

Для того чтобы произвести проверку высоковольтного кабеля потребуется стрелочный или цифровой мультиметр. Сам процесс проверки очень прост: устанавливаем измерительный прибор в режим измерения сопротивления, отсоединяем провод от свечи и катушки зажигания и замеряем его сопротивление. Разумеется, измерение сопротивление должно быть произведено по отношению ко всем проводам.

В процессе работы стоит помнить, что разница между показания не должна быть более 2 кОм. В случае если разница между показаниями выше данного значения, то это является свидетельством необходимости замены провода.

Отдельно следует вспомнить и о другом способе проверки. Для выполнения работы потребуется достаточно длинный отрезок провода с оголенными концами. Один конец подключаем к минусовому выводу АКБ (к «массе»), а вторым концом постепенно проводим по высоковольтному кабелю. В местах повреждений, если они присутствуют, будет проскакивать искра.

Подчеркнем, что если, например, после того, как была произведена проверка высоковольтных проводов зажигания мультиметром, и был выявлен только один пришедший в негодность провод, то замены подлежит весь комплект. Все дело в том, что только установка нового комплекта может гарантировать одинаково стабильную работу каждого цилиндра силового агрегата. По этой же самой причине крайне не рекомендуется производить какой-либо ремонт колпачков и/или изоляции высоковольтного кабеля.

Как показывает многолетний опыт, основной причиной быстрого выхода из строя кабелей системы зажигания является их низкое качество. Помните, что экономия в данном случае неоправданна.

Гораздо выгоднее один раз купить качественное изделие, чем каждый месяц покупать низкокачественное, но зато дешевое.

Проверяем высоковольтные провода зажигания самостоятельно

На автомобилях с бензиновыми моторами топливная смесь поджигается искровым разрядом, поступающим на электроды свечей по специальным проводникам, снабженным усиленной изоляцией. Токоведущие жилы не вечны – в процессе эксплуатации они изнашиваются и приходят в негодность – частично или полностью. Проверка высоковольтных проводов зажигания – одно из первых диагностических мероприятий, выполняемых при нестабильной работе силового агрегата (двигатель «троит»). Операция производится в гаражных условиях, посещать автосервис не обязательно.

Кратко об устройстве проводников

Раньше для подачи разряда от катушки к свечам применялись традиционные ВВ провода с медным многожильным сердечником (на жаргоне – бронепровода). Недостаток подобных изделий – постепенное переламывание тонких проволочек из-за низкой эластичности. В современные автомобили производители устанавливают гибкие кабели с неметаллической жилой, сделанной из стекловолокна с углеродной пропиткой. Токоведущая часть обернута несколькими вспомогательными оболочками:

  • полимерный экранизирующий слой;
  • внутренняя изоляция, изготовленная на основе силикона;
  • каркас в виде оплетки из прочной синтетики;
  • наружная силиконовая изоляция.

Старые изделия с медными жилами имели практически нулевое сопротивление, отчего установленное на автомобиле радио «хрипело» от помех. Нынешние провода высокого напряжения обладают повышенным сопротивлением, позволяющим экранировать помехи.

Для подключения к контакту свечной «люльки» углеродная жила выведена за пределы изоляции и загнута в обратном направлении. Снаружи сердечник обжимается медной клеммой, надеваемой на контакт свечи. Сверху соединение защищено плотным диэлектрическим колпачком. Второй конец проводника подключен к катушке зажигания аналогичным образом.

Важное преимущество новых высоковольтных бронепроводов – эластичность и гибкость. Благодаря данным качествам изделие служит значительно дольше медных предшественников. Но рано или поздно наступает момент, когда углеродно-силиконовые ВВ провода изнашиваются и начинают «хандрить».

Типичные неисправности кабелей зажигания

Существует 3 основных неполадки, связанных с высоковольтными проводами:

  1. Внутренний обрыв токонесущей жилы.
  2. Пробой внешней силиконовой изоляции.
  3. Ненадежный контакт в местах соединения медных наконечников с клеммами свечей и катушек высокого напряжения.

Обрыв или перелом углеродного сердечника не всегда ведет к полному отказу ВВ провода. Поскольку на свечу подается импульс высокого напряжения номиналом более 20 киловольт, ток все равно «пробивает» место обрыва и попадает к свечным электродам. Но мощность искры заметно ослабевает, отсюда возникают проблемы с качественным воспламенением топливовоздушной смеси в камере сгорания. В худшем случае искра не поступает вовсе и цилиндр полностью отказывает.

Примечание. Полный отказ цилиндра на автомобиле характеризуется падением холостых оборотов, «трясучкой» силового агрегата и существенным снижением мощности. Соответственно, расход бензина увеличивается на 25%.

Подобная картина наблюдается при слабом контакте медных проводников в местах соединений. Из-за окислившейся либо плохо прилегающей клеммы сила электрического импульса теряется на преодоление данного препятствия, а на свечных электродах разряд ослабевает.

При пробое двух изоляционных слоев напряжение теряется иначе. Принцип следующий: ток, обнаруживший цепь более низкого сопротивления, стремится пройти по этому пути. Если точка пробоя изоляции располагается поблизости от металлических деталей машины, связанных с «минусом» бортовой сети (массой), между ними образуется искровой разряд. В результате свече зажигания достается только половина импульса, отчего воспламенение горючей смеси происходит вяло. Кстати, проверить бронепровода мультиметром на предмет целостности изоляции невозможно, понадобится специальное оборудование.

Перебои в подаче искровых разрядов отслеживаются по таким признакам:

  • двигатель работает нестабильно из-за пропусков зажигания и недостаточной мощности искры;
  • периодически отказывает один или несколько цилиндров, наблюдается вибрация мотора на холостом ходу;
  • в процессе движения ухудшается разгонная динамика, ощущается слабый отклик на педаль акселератора;
  • топлива расходуется больше.

Подобные симптомы проявляются на неисправных свечах зажигания, но проверить их работоспособность сложнее. Поэтому начинайте диагностику с проводов высокого напряжения.

Способы проверки

В гаражных условиях проверить высоковольтные провода можно следующими способами:

  1. Поочередная замена проводников исправным кабелем.
  2. Поиск пробитой изоляции с помощью дополнительного провода.
  3. Осмотр работающего двигателя в темное время суток.
  4. Измерение сопротивления омметром (мультиметром).

Первый вариант основан на методе исключения. Возьмите длинный исправный бронепровод и ставьте его вместо существующих высоковольтных кабелей. Если при подключении к одному из цилиндров работа силового агрегата улучшается, ВВ провода признаются негодными (нужно менять весь комплект). В противном случае поиск неполадки продолжается в другом месте, например, свечах зажигания.

Справка. Высоковольтные кабели можно проверить старым дедовским методом. Оставив двигатель работать на холостых оборотах, наденьте плотную резиновую перчатку и поочередно снимайте и подключайте «люльки» к контактам свечей, не касаясь телом кузова машины. Если при разрыве цепи какого-либо цилиндра поведение мотора не изменится, вы обнаружили негодный проводник.

Явно пробитая изоляция кабелей высокого напряжения выявляется на автомобиле в ночное время. Достаточно открыть капот и запустить силовой агрегат, наблюдая за проводами. Если увидите «светомузыку», состоящую из искр, смело устанавливайте новые изделия, а старые выбрасывайте.

Другой способ отыскать пробой – взять изолированный медный проводник, подключить к отрицательной клемме аккумуляторной батареи и завести мотор. Оголенную жилу второго конца ведите вдоль каждого высоковольтного кабеля, начиная от защитных колпачков. О неисправности даст знать проскочившая в месте пробоя искра.

Внутренний обрыв углеродного проводника определяется путем измерения сопротивления токоведущей части. Возьмите мультиметр либо другой прибор с функцией омметра, отсоедините концы кабелей от катушек и свечей, затем поочередно проведите замеры. Сопротивление на высоковольтных проводах должно быть в пределах 3,5–10 кОм, точные значения указываются производителями на силиконовой изоляции изделий.

Когда приходит в негодность первый проводник, в ближайшем будущем начнут «хандрить» и остальные. Поэтому неисправные кабели меняются комплектами. Купить в магазине один провод все равно не удастся.

Как самому проверить высоковольтные бронепровода зажигания

Высоковольтные автомобильные бронепровода являются достаточно простым элементом системы зажигания. При этом высоковольтный провод выполняет важнейшую функцию в работе указанной системы. При помощи высоковольтных автомобильных проводов от катушки зажигания происходит передача электрического тока на свечи зажигания для образования искры и своевременного воспламенения топливно-воздушной смеси в цилиндрах двигателя.

От качества работы высоковольтных проводов напрямую зависит эффективность воспламенения смеси, что означает стабильность работы двигателя на разных режимах. Неисправность высоковольтного провода зажигания или нескольких проводов может привести к троению мотора, повышенному расходу топлива, потере мощности и т.д. Простота устройства и место расположения автомобильных бронепроводов позволяет точно и быстро осуществить их самостоятельную проверку своими руками.

Читайте в этой статье

Распространенные неисправности высоковольтных бронепроводов

Выход из строя высоковольтного провода сопровождается симптомами, которые аналогичны сбоям во время работы свечи зажигания. Зачастую двигатель начинает работать неустойчиво, дергается при нажатии на педаль газа, троит на холостых оборотах. Электрический ток может совсем не подаваться на свечу или же доходить до свечи зажигания не полностью. Во втором случае обычно имеет место пробой высоковольтного провода зажигания.

Если бронепровод зажигания пробило, тогда двигатель начинает работать с заметными перебоями. Главными причинами выхода из строя высоковольтных автомобильных проводов являются:

  • неисправности контактов высоковольтного провода в месте соединения со свечей зажигания или катушкой зажигания;
  • повреждена токопроводящая жила провода для подачи импульса;
  • разрушение изоляции высоковольтного автомобильного провода зажигания, что приводит к пробою тока и утечкам;
  • повышенное сопротивление высоковольтных бронепроводов;

В том случае, если произошел разрыв основной жилы, тогда внутри высоковольтного провода образуется искра в месте такого разрыва. Образование электрического разряда между двумя концами разорванного под изоляцией высоковольтного бронепровода приводит к падению напряжения, вызывает нежелательный электромагнитный импульс. Такой импульс оказывает негативное воздействие на автомобильные датчики электронной системы управления двигателем (ЭСУД), правильность их показаний нарушается.

В некоторых случаях, когда цилиндр полностью не работает, может заметно увеличиваться расход топлива и меняется цвет выхлопа. Так происходит по причине попадания в систему выпуска несгоревшего топлива из камеры сгорания.

Самостоятельная проверка автомобильных высоковольтных свечных проводов системы зажигания

Начинать диагностику необходимо с внешнего осмотра высоковольтных проводов. При таком наружном осмотре не допускается наличие заметных дефектов в виде трещин, переломов и т.д.

  1. Самым простым способом проверки является использование заведомо исправного запасного провода зажигания. Необходимо провести поочередное отключение каждого бронепровода, заменяя его запасным. Стабилизация работы двигателя после замены одного из проводов укажет на неисправный элемент.
  2. Для выявления возможного пробоя бронепровода зажигания необходимо дождаться темного времени суток. С наступлением темноты потребуется открыть капот и запустить мотор. Если имеется пробой, тогда в процессе работы двигателя становится хорошо заметной электрическая искра на поврежденном высоковольтном проводе.
  3. Также проверку высоковольтных автомобильных проводов зажигания можно осуществить посредством использования дополнительного изолированного провода. Для проверки концы такого провода зачищаются (оголяются). Затем один конец замыкается на «массу», а вторым концом следует провести по самому высоковольтному проводу, местам соединений, изгибам, колпачкам и т.д. Если в определенном месте есть пробой, тогда между областью пробоя и концом провода-тестера появится электрическая искра.
  4. Проверка сопротивления высоковольтных автомобильных проводов осуществляется при помощи мультиметра. Для проверки мультиметр необходимо перевести в режим работы в качестве омметра. Следующим шагом становится снятие провода со свечи зажигания на первом цилиндре, после чего указанный провод также отключается от катушки зажигания. Затем контакты мультиметра подсоединяются к концам провода, после чего производится оценка полученных данных.

Аналогичным способом следует проверить остальные высоковольтные провода зажигания. Следует учитывать, что разброс по показаниям между всеми проводами не должен быть выше 2-х или максимум 4-х кОм. Превышение данного порога укажет на необходимость замены высоковольтных автомобильных проводов зажигания.

Следует добавить, что в случае обнаружения неисправного провода замена только одного дефектного элемента не рекомендуется, так как является временной мерой. Высоковольтные бронепровода зажигания в автомобиле оптимально менять комплектом. Такой подход позволяет обеспечить наиболее эффективную работу системы зажигания и ровную работу двигателя на всех режимах. По этой же причине крайне не рекомендуется осуществлять ремонт высоковольтных проводов для дальнейшей эксплуатации без замены.

Тюнинг и модернизация свечей зажигания своими руками для улучшения топливной экономичности и других характеристик ДВС. Как самому доработать свечи.

Признаки неисправности свечей зажигания. Оценка состояния свечи при визуальном осмотре, способы проверки свечей зажигания. Налет на электродах свечи.

По каким причинам могут возникать пропуски воспламенения топливно-воздушной смеси в одном или нескольких цилиндрах. Диагностика неисправности, рекомендации.

Что делать, если пропала искра зажигания. Диагностика отдельных элементов: свечи, катушка, модуль зажигания. Как проверить искру на инжекторном моторе.

Что необходимо знать при подборе свечей зажигания по модели авто: размер, калильное число, взаимозаменяемость. Выбор свечей по конструкции, полезные советы.

Основные причины попадания моторного масла в свеченые колодцы. Что делать водителю, если масло течет в свечной колодец, как провести ремонт своими руками.

Электронное зажигание для автомобиля своими руками

Свечи для бесконтактной схемы зазор между электродами должен составлять 07 08 мм провода высокого напряжения.

  • Следующий шаг найти на корпусе трамблера у основания 5 меток и маркером( можно любым например черным) делаем отметину на блоке цилиндров напротив средней метки на трамблере
  • Если после установки электронного зажигания двигатель станет «вялым и потеряет свою приемистость во время разгонов необходимо проверить работу центробежного регулятора прерывателя
  • «Восьмерочная (273705) по своим размерам не отличается от «копеечной (Б117А поэтому проблем с установкой не существует

Как сделать простое электронное зажигание для автомобиля

Это позволило избавиться от контактной схемы поэтому у многих владельцев классических автомобилей ВАЗ возникло желание поменять систему зажигания тем более что установить электронное зажигание своими руками совсем несложно Для возникновения искры в нужный момент должно произойти замыкание контактов Последующее их размыкание производится при помощи кулачков.

Система зажигания бензио двигателя предназначена для обеспечения искрообразования на свечах зажигания в строгом соответствии с порядком работы цилиндров Одной из первых таких систем является контактная называемая также классической она установлена на классических моделях автомобилей ВАЗ С развитием технологий контактное зажигание уступило место электронному в котором.

Объявления, электронное зажигание на урал своими руками чертежи Бесконтактное электронное зажигание своими руками на урале Зажигание днепр своими руками Мотоцикл К750 мотоциклы Урал Днепр.

Электронное Тюменское Зажигание Урал ДнепрКомпл.

Видео онлайн, как построить чертежи Электронное зажигание мт своими руками Ремонт и эксплуатация автомобилей.

Заря, как самому сделать электронное зажигание на урал.

Бесконтактное электронное зажигание своими руками на урал.

Как делать из кожи амулеты Термометр usb самодельный Электронное зажигание на мотоцикл урал своими руками.

Как самому установить электронное зажигание Завод Адмирал.

Бесконтактное зажигание на мотоцикл урал своими руками Сделай больше Электронное зажигание урал своими руками subdivisionace Электронное зажигание мотоциклов Урал и Днепр.

Простая схема электронного зажигания Схемаавто поделки

  • Понемногу вращая стартером установить бегунок распределителя под углом 90 к блоку цилиндров двигателя
  • Потребность в периодической регулировке зазоров между контактами и угла опережения зажигания нестабильное искрообразование подгорание контактов и неисправности конденсатора прерывателяраспределителя предопределили необходимость дальнейшей модернизации подобной схемы
  • Диод VD10 (КД411АМ) подбирался по импульсным характеристикам другие очень грелись не выполняли в полной мере свою функцию защиты от обратного выброса
  • Но мкости будут заряжаться до максимального амплитудного я напряжения да ещ и полным (без прерывателя) периодом

Электронное зажигание своими руками для автомобиля

Электронное зажигание для авто — Поделки для авто

Улучшение технических параметров автомобиля, является одной из приоритетных задач процесса модернизации для каждого водителя, в частности: снизить расход топлива; увеличить мощность двигателя; создание резервного источника энергии для запуска двигателя в зимнее время. Большинство национальных автомобилей работают на карбюраторных двигателях.

Для запуска двигателя, необходимо чтобы горючая смесь воспламенилась не только во время запуска карбюраторного двигателя в камере сгорания, но также во время работы. Воспламенение смеси во время работы осуществляется посредствам электронных свечей, которые, в свою очередь, ввёрнуты в головку цилиндра и в которых воспламените смеси происходит за счёт создания электрического разряда определённой мощи, достаточной для выделения необходимого количества электрической энергии.

Во время образования искры между электродами, необходимо чтобы уровень напряжение составлял не менее 20кВ. Если двигатель автомобиля прогрет, во время искрообразования специализированная рабочая смесь обладает должными свойствами: иметь необходимый температурный уровень, а также сама смесь должна быть уже сжата, это позволит создать самовоспламенение.

При данной ситуации, чтобы осуществить запуск двигателя, достаточно электрический заряд составил 5мДж энергии. Однако двигатель автомобиля не ограничивается лишь одним режимом функционирования, поэтому часто происходит ситуация, когда необходимо чтобы энергия свечи составляла примерно 100 мДж.

Практический пример: работа двигателя на бедной смеси, когда не до конца открыт ограничитель (дроссель) или функционирования двигателя на холостом ходу. На национальных автомобилях, которые уже давно используются в процессе эксплуатации, стоит классическая батарейная система зажигания, в которой существует множество разновидностей весьма существенных технических недостатков.

Если двигатель функционирует на холостых оборотах, то весьма заметный процент электрической энергии искры, поглощается между контактами прерывателя за счёт создания дугового разряда. Во время работы двигателя автомобиля на высоких оборотах, между контактами прерывателя возникают искристые дребезги, вследствие этого уменьшается вторичное натяжение катушки. Данный процесс происходи при смыкании контактов прерывателя.

Как результат, время смыкания контактов существенно снижается, как следствие, на катушки первичной отмотки накапливается электрическая энергия определённого уровня мощности, из-за чего может и не произойти воспламенения горячей смеси и двигатель автомобиля не будет приведён в рабочее состояние. При данной ситуации, катушка первичной обмотки выполняет роль энергетического аккумулятора.

Последствия данного процесса проявляются на глазах: мощность двигателя существенно снижается от стартовой; через выхлопную трубу начинает больше выделяться углекислого газа; топливо не до конца сгорает и выходит, расход бензина у автомобиля существенно возрастает.

Национальные автомобили длительного срока эксплуатации, имеют батарейную систему зажигания, детали в которой уже давно не пригодны из-за длительного срока их постоянной эксплуатации, вследствие этого изнашиваются сами контакты прерывателя, что в свою очередь влечёт за собой снижение работоспособности двигателя, а также существенно снижается количество успешных запусков двигателя.

Трамблер – многоискровый механический распределитель, который встроен в систему батареи, его главным техническим достоинством, является простота конструкции. Сам распределитель имеет двойную функцию работы: распределяет синхронно электрическое напряжение равномерно по всем цилиндрам двигателя и прерывает цепь постоянного тока для создания высокого электрического напряжения.

Применяя полупроводниковые приборы – это позволяет повысить вторичное напряжение. Данные приборы представляют собой управляемые ключи, которые обеспечивают прерывание тока в катушке зажигания первичной обмотки. В качестве управляемых ключей, наибольшее широкое применения получили транзисторы высокой мощности, который способны генерировать ток силой до 10 ампер, без искрения или какого-либо механического повреждения во время индуктивной нагрузки.

Именно искрение и механическое повреждение являются главными недостатками использования прерывателей. Существует также возможность использования силовых тиристоров, однако, они не получили широкой промышленной реализации в системах каммуляции (накопления) электрической энергии, поскольку они не имели индуктивности.

Перестройка батарейной системы зажигания в контактно-транизиторную систему зажигания – это один из наиболее доступных и эффективных способов модернизации. Конденсаторно-транзисторное устройство зажигания изображено на представленном ниже рисунке.

Данное устройство позволяет повысить качество системы зажигания, за счёт формирования электрической искры большой длительности, таким образом, процесс сгорания приближается к оптимальному диапазону динамических изменений оборотов и нагрузки самого двигателя.

Триггер Шмитта представляет собой систему зажигания, которая в свою очередь состоит из: развязывающихся усилителей V3, V4; транзисторов V1 и V2; электронного ключа V5, сего помощью катушка зажигания первичной обмотки накапливает электрический ток.

Благодаря триггеру Шмитта можно коммутирующие импульсы, как с крутым фронтом, так и со спадом во время размыкания или смыкания контактов прерывателя. Вследствие этого возрастает скорость изменения и амплитуды высоковольтного напряжения при выходе из вторичной обмотки катушки зажигания, данное явление происходит благодаря возрастанию скорости прерывания тока на катушке зажигания первичной обмотки.

Что в свою очередь позволяет существенным образом улучшить условия для возникновения электрической искры в свече зажигания. Описанная выше система зажигания предоставляет высокие энергетические характеристики электрической искры, что приводит к более полному сгоранию бензина, а также повышению эффективности запуска двигателя автомобиля.

Устройство электронного зажигания содержит транзисторы VI, V2, V3 — КТ312В, V4 — КТ608, V5 — КТ809А, однако, можно применить транзистор C4106Ю, который собственно изображен на фото выше. С2 конденсатор должен обладать напряжением не менее 400 В. Используется стандартная катушка зажигания в легковых автомобилях – Б 115.

Похожие статьи:

ЭЛЕКТРОННОЕ ЗАЖИГАНИЕ ДЛЯ АВТО

Каждый автолюбитель стремится улучшить параметры своего автомобиля, особенно такие, как расход топлива, мощность, запуск двигателя в зимнее время. В камере сгорания автомобильного карбюраторного двигателя рабочая смесь воспламеняется как в период пуска, так и во время его работы посредством электрического разряда между электродами свечи, ввернутой в головку цилиндров двигателя. Надёжное образование между электродами свечи искры, происходит при довольно высоком напряжении около 20кВ. На прогретом двигателе к моменту искрообразования рабочая смесь сжата и имеет температуру, близкую к температуре самовоспламенения. В этом случае достаточно даже небольшой энергии разряда —5мДж. Но существуют некоторые режимы работы двигателя, когда требуется значительная энергия искры — до 100 мДж. Например пусковой режим, работу на бедных смесях при частичном открытии дросселя, работу на холостом ходу. На наших стареньких, видавших виды автомобилях применяются классические, батарейные системы зажигания, которые имеют серьёзные недостатки.

На холостых оборотах двигателя между контактами прерывателя такой системы возникает дуговой разряд, поглощающий заметную часть энергии искры. На высоких оборотах двигателя уменьшается вторичное напряжение катушки зажигания из-за дребезга контактов прерывателя, который возникает при их замыкании, уменьшается время замкнутого состояния контактов из-за чего в первичной обмотке катушки зажигания запасаемая энергия может оказаться недостаточной для формирования мощной искры зажигания необходимой для поджигания топливной смеси. В результате снижается мощность двигателя, увеличивается концентрация углекислого газа в выхлопе, не полностью сгорает горючее, получается бензин машина кушает, а едет плохо. В батарейной системе зажигания, особенно с учетом качества деталей для старых авто, быстро изнашиваются контакты прерывателя, что снижает надежность запуска и работы двигателя. Большим достоинством батарейной системы с многоискровым механическим распределителем (в народе трамблер) является ее простота, обеспечиваемая двойной функцией механизма распределителя: прерывание цепи постоянного тока для генерирования высокого напряжения и синхронное распределение высокого напряжения по цилиндрам двигателя.

Повысить развиваемое такой системой зажигания вторичное напряжение можно применением полупроводниковых приборов, работающих в качестве управляемых ключей, служащих для прерывания тока в первичной обмотке катушки зажигания. Наиболее широкое использование в качестве управляемых ключей нашли мощные транзисторы, способные коммутировать токи амплитудой до 10 А в индуктивной нагрузке без какого-либо искрения и механического повреждения, характерных для контактов прерывателя, также возможно применение силовых тиристоров, но широкой промышленной реализации в системах зажигания с накоплением энергии в индуктивности они не имели.

Один из способов улучшения батарейной системами зажигания переделка ее в контактно-транзисторную систему зажигания (КТСЗ). На рисунке ниже приведена принципиальная схема конденсаторно-транзисторного устройства зажигания. Это устройство позволяет формировать искру зажигания с большой длительностью, благодаря этому процесс сгорания становится близким к оптимальному в большом диапазоне изменения оборотов двигателя и его нагрузки.

Устройство зажигания состоит из триггера Шмитта на транзисторах V1 и V2, развязывающих усилителей V3, V4 и электронного ключа V5, с помощью которого коммутируется ток в первичной обмотке катушки зажигания.

Триггер Шмитта позволяет формировать коммутирующие импульсы с крутым фронтом и спадом при замыкании и размыкании контактов прерывателя. Благодаря этому в первичной обмотке катушки зажигания увеличивается скорость прерывания тока, что увеличивает скорость изменения и амплитуду высоковольтного напряжения на выходе вторичной обмотки катушки.

В результате существенно улучшаются условия для возникновения искры в свече зажигания. Высокие энергетические характеристики искры в описанной системе зажигания способствуют улучшению запуска автомобильного двигателя и более полному сгоранию горючей смеси.

Усовершенствованная электронная система зажигания автомобиля.

В последние годы электронные приборы находят все большее применение в автомобильном транспорте, в том числе и приборы электронного зажигания. Прогресс автомобильных карбюраторных двигателей неразрывно связан с их дальнейшим совершенствованием. Кроме того, сейчас к приборам зажигания предъявляются новые требования, направленные на радикальное повышение надежности, обеспечение топливной экономичности и экологической чистоты двигателя.

Существуют две системы устройств электронного зажигания — транзисторные и тринисторные. Сравнивая их между собой, можно отметить характерные преимущества и недостатки.

Транзисторные устройства проще и дешевле, обеспечивают большую длительность искрового разряда в свечах, достигающую 2.Б…З мс. Однако при сравнительно небольшой скорости нарастания высоковольтного напряжения на свечах эффективность работы их значительно падает от появления шунтирующих нагрузок, которые обусловлены дополнительными утечками тока, вызванными загрязнением электропроводки, самого распределителя, работающего под высоким напряжением, изоляторов свечей и нагара в них, а со временем и старения изолирующих деталей системы зажигания. Кроме того, транзисторные устройства требуют применения специальной катушки зажигания.

Тринисторные устройства несколько сложнее и позволяют получить высокую скорость нарастания высоковольтного напряжения на свечах, практически не критичны к шунтирующим нагрузкам. Ток утечки не влияет существенно на качество искрового разряда при крутом фронте его нарастания. Но, имея малую длительность искры, в лучших конструкциях — до 0,6 мс, тринисторные устройства также не обеспечивают эффективной работы двигателя в свете новых требований.

Тринисторная система зажигания принципиально отличается от транзисторной тем, что в ней энергия накапливается не в катушке зажигания, а в накопительном конденсаторе. Такой принцип действия позволяет в наибольшей степени устранить недостатки, присущие как классической контактной, так и транзисторной системам. Поэтому тринисторная система была взята за основу с целью доработки ее таким образом, чтобы увеличить длительность искрового разряда и свече до 1,1…1,3 мс, так как типичная для таких систем длительность 0,25 мс явно недостаточна для стабильной работы двигателя на разных режимах, полного сгорания топливной смеси и особенно для надежного пуска двигателя в зимнее время.

Как было установлено автором, на автомобиле ЗАЗ для надежного пуска двигателя в зимнее время длительность искрового разряда должна быть как минимум 0,8 мс с экспериментально измеренной амплитудой напряжения 1 В на сопротивлении 14 Ом в цепи свечи при минимальном напряжении бортовой сети 5…6 В, что обусловлено работой стартера. Эти условия были исходными для разработки усовершенствованного блока. Известно, что выпускаемые промышленностью тринистор-ные электронные устройства, имеющие длительность искрового разряда 0,25…0,6 мс, обеспечивают стабильную работу устройства при снижении напряжения питания до 8 В, что явно недостаточно для надежного пуска двигателя в зимнее время.

Технически задача была сформулирована следующим образом: при пуске двигателя необходимо подавать довольно мощную серию импульсов длительностью не менее 0,8 мс во время нахождения поршня цилиндра в верхней мертвой точке. Следовало также попытаться использовать этот принцип и для основного режима работы двигателя.

В результате разработки был создан блок тринисторного зажигания (БТЗ) со следующими параметрами:

Напряжение питания, В 12±50 %

Начальный потребляемый ток, А ….. 0,55

Максимальный потребляемый ток, А . . . . 2,2…2,5

Максимальная частота вращения 4-цилиндрового двигателя, об/мин 5000

Начальная амплитуда 1-го разрядного импульса на сопротивлении 14 Ом, В 3±0,2

Длительность искрового разряда в свече, мс . 1,1…1,3

Напряжение на накопительном конденсаторе, В 400

Нестабильность напряжения на накопительномконденсаторе при минимальной и максимальной частоте вращения, %. 10

Рабочая частота генератора, Гц ….. 800

Принципиальная электрическая схема БТЗ приведена на рис. 1. Во многом она повторяет известные разработки, поэтому ниже приведено описание работы отличающихся узлов. Подключение БТЗ к системам зажигания автомобилей приведено на рис. 2, 3.

Основным отличием БТЗ является введение обратной связи на управляющий электрод тринистора VS1 через цепочку C5R7R8VD12, в результате чего за один цикл работы БТЗ на управляющий электрод подается не только импульс по цепи запуска от контактного прерывателя, как раньше, а пакет из 4…5 импульсов (рис.4). В итоге после размыкания контактов прерывателя тринистор дополнительно открывается соответственное число раз, обеспечивая тем самым более полную разрядку накопительного конденсатора С4 на первичную обмотку катушки зажигания, т. е. более полное использование запасенной энергии на создание разряда в искровом промежутке.

Дополнительная серия искровых разрядных импульсов в свече после первых двух (импульсы 3… на рис 5) образуется за счет накопленной от разрядки конденсатора С4 электромагнитной энергии в катушке зажигания при пробое искрового промежутка свечи и трансформации этой энергии в первичную обмотку с подзарядкой накопительного конденсатора. Эти же импульсы воздействуя с уменьшающейся амплитудой через цепочку C5R7R8VD12 на управляющий электрод тринистора VS1, заставляют его открываться через каждые 150…200 мкс, что обеспечивает повторную разрядку накопительного конденсатора С4 на первичную обмотку. Так продолжается до тех пор, пока не израсходуется вся энергия, запасенная в катушке зажигания от первого разрядного импульса. Таким образом, добавлением цепочки C5R7R8 с диодом VD12 удалось увеличить длительность искрового разряда в свече до 1,3 мс. В известных разработках тринисторных систем обеспечено лишь частичное использование энергии, запасенной емкостным накопителем. Искровой разряд БТЗ имеет колебательный затухающий характер с изменением полярности полуволн. Такой характер разрядного процесса положительно влияет на увеличение срока службы свечей, так как происходит равномерное выгорание металла как центрального, так и бокового электродов в искровом промежутке.

Многократное искрообразование в течение одного цикла создает дополнительную нагрузку на преобразователь постоянного тока и увеличивает время запуска автогенератора после срыва колебаний при включении тринистора. При испытании модернизированного заводского блока зажигания (типа Электроника) напряжение на накопительном конденсаторе снижалось с 400 до 80 В на большой частоте вращения коленчатого вала двигателя. Такое устройство не могло нормально работать. С целью устранения этого недостатка был изготовлен более мощный преобразователь с удвоением выходного напряжения. Это схемное решение, являясь второй отличительной чертой усовершенствованного блока зажигания, привело к уменьшению времени пуска автогенератора с 1 до 0,25 мс, так как обеспечивалась более мягкая связь между тринисторным коммутатором и автогенератором. При неизменном напряжении питания устройство позволяет обеспечивать на минимальной и максимальной частоте вращения коленчатого вала двигателя довольно постоянное напряжение на накопительном конденсаторе С4, колеблющееся в пределах лишь 8…10%. Напряжение на накопительном конденсаторе выбрано таким же, как и у заводского блока — 400 В при номинальном напряжении питания.

Элементы R5 и СЗ в цепи высокого напряжения +400 В служат для сглаживания и стабилизации высокого напряжения на выходе выпрямителей, а также для уменьшения времени запуска автогенератора.

В связи с уменьшением количества витков вторичной обмотки трансформатора Т1 в два раза увеличилась его надежность, так как напряжение на вторичной обмотке уменьшилось с 400 до 200 В.

Усовершенствованный таким образом блок обеспечивает значительное улучшение пуска двигателя в зимнее время, надежную работу на скоростях до 90… 100 км/ч. На автомобиле ЗАЗ-968 был неоднократно проверен расход бензина на 100 км пробега. Экономия составила 7,2 %. Наряду с установкой БТЗ был также увеличен зазор в свечах до 1,5 мм, а положение регулятора качества смеси для ее обеднения было изменено с 1,5…2,0 оборотов (720°) до 180…2000 от своего начального полностью закрученного положения.

Выясняя причины плохого пуска двигателя в зимнее время, было обнаружено следующее: при падении напряжения в бортсети автомобиля до 5…6 В во время работы стартера БТЗ, как и другие блоки зажигания, не обеспечивал стабильной подачи искры в цилиндры. Причиной тому оказалось следующее: при таком значительном снижении напряжения питания амплитуда управляющих импульсов, которые поступают в т.А при размыкании контактов прерывателя (рис. 1), оказывается недостаточной для надежного запуска тринистора VS1, становясь соизмеримой с уровнем помех от работающего стартера и транзисторного автогенератора. Это вызывает пропуски искрообразования. Используемый фильтр L1C7 выполняет две функции. Основная из них: после размыкания прерывателя в обмотке дросселя L1 за счет накопленной магнитной энергии возникают затухающие колебания из-за переходного процесса, по принципу равносильного тому, как это происходит в классической батарейной системе зажигания. Амплитуда этих колебаний в зависимости от индуктивности дросселя L1 может достигать нескольких десятков вольт. Положительные полуволны колебаний длительностью до 10… 15 мкс через диод VD11 накладываются на передние фронты основных импульсов и обеспечивают надежный запуск тринистора VS1 (в описываемом устройстве их амплитуда составляла 7…9 В).

Второе назначение фильтра L1C7 — уменьшение влияния помех от работы стартера и транзисторного автогенератора на пусковую цепь тринистора.

Конструктивно БТЗ может быть выполнен в двух модификациях: в виде объемного модуля с расположением деталей на платах с монтажными лепестками или изготовлением общей печатной платы блока, одновременно являющейся и несущей конструкцией. По мнению автора, для индивидуального изготовления проще первый вариант, так как платы с монтажными лепестками могут быть использованы от старых, отслуживших свой срок радиоприборов. В качестве разъема для подключения БТЗ к бортсети автомобиля подойдут панельки и цоколи от старых радиоламп. Переход от электронного зажигания на обычное (контактное) производится простой перестановкой разъема — цоколя из одной панельки в другую (см. рис. 1). В БТЗ использованы резисторы типа МЛТ, кроме проволочных R1 и R4, которые намотаны на каркасах резисторов типа ВС-0,5. В качестве накопительного конденсатора С4 использованы два конденсатора МБГ на 1 мкФ, 500 В.

Выпрямительный сдвоенный диодный блок КЦ-403Б может быть заменен диодами, например МД218, но это несколько увеличит размеры устройства из-за монтажа восьми диодов. В таком случае лучше использовать диоды КД105В.

Конденсатор С5 должен быть высокого качества, герметизированным, рассчитанным на напряжение не менее 1000 В, например КБГ-М2. В качестве дросселя L1 можно использовать вторичную обмотку малогабаритного выходного трансформатора транзисторных радиоприёмников ВЭФ, Альпинист и др. Индуктивность дросселя составляет 0,07…0,1 Гн.

Трансформатор Т1 должен быть выполнен на кольцевом сердечнике из феррита марки 2000 НМ типоразмера К45Х28Х12, составленном из двух колец, или на Ш-образном ферритовом сердечнике Ш12Х15, составленном из двух половин без зазора. Использование трансформаторного железа исключается.

Данные обмоток (в порядке их намотки):

III — 500 + 50+50 витков (с отводами проводом ПЭЛШО 0,23 в случае тороида (кольца). Для Ш-образного сердечника можно использовать провод ПЭВ-1 0,23. Намотку вести с межслойной изоляцией из кабельной или конденсаторной бумаги;

Иа + Пб — 35+35 витков проводом ПЭЛШО-0,75 (намотка в два провода) в случае тороида, а для Ш-об-разного сердечника — ПЭВ-1 0,75;

la+ I6—11 + 11 витков проводом ПЭЛШО-0,28 (намотка в два провода) для обоих сердечников.

Транзисторы П210А…Г желательно подобрать в паре, т. е. с равными или по возможности близкими значениями обратных токов коллекторных переходов и коэффициентов усиления по току. Транзисторы установлены на унифицированных радиаторах по ТУ.8.650.022.

Настройка. Правильно собранный блок БТЗ обычно в дополнительной наладке не нуждается. Если же после сборки и проверки правильности монтажа блок не будет нормально работать, то основными причинами могут быть следующие:

если устройство зажигания переходит в режим непрерывной генерации искр и не управляется контактами прерывателя, то либо в нем применен тринистор с низким напряжением переключения, либо пробит диод VD11;

если отсутствует генерация преобразователя напряжения при заведомо исправных транзисторах, необходимо проверить правильность (полярность) подключения базовых обмоток трансформатора;

если работа преобразователя сопровождается хриплым или шипящим звуком, надо проверить диоды выпрямителя и правильность их включения, а затем транзисторов. Причиной большой нагрузки на преобразователь может быть также неисправность накопительного конденсатора С4. В случае исправности тринистора надо убедиться в отсутствии замыкания его корпуса на общую (минусовую) шину устройства.

Необходимо помнить, что корпус тринистора является анодом и в рабочем состоянии всегда будет находиться под высоким напряжением +400 В.

При проверке устройства зажигания вне автомобиля на стенде следует обязательно соединить корпус катушки зажигания с корпусом электронного блока (общая минусовая шина), так как в противном случае может произойти пробой катушки и повреждение деталей электронного блока.

Необходимо помнить, что напряжение на выходе катушки зажигания значительно более высокое, чем в обычной системе зажигания, поэтому надо соблюдать осторожность и правила техники безопасности.

Перед установкой устройства на автомобиль желательно проверить его работоспособность с катушкой зажигания при напряжении питания 12,6 В от аккумулятора. При этом следует помнить, что без подключенной свечи к высоковольтному выходу катушки зажигания нельзя испытывать устройство, так как это грозит выходом катушки из строя. Напряжение на накопительном конденсаторе проверяют в контрольной точке Б относительно корпуса блока (общей минусовой шины). Оно должно быть равно 400±20 В.

В случае большего отклонения напряжения следует переключить выводы вторичной обмотки трансформатора. Схема измерения напряжения на конденсаторе G4 приведена на рис. 6.

Желательно также убедиться, работает ли дополнительная цепочка C5R7R8VD12. Для этого ее вначале отключают. При имитации работы прерывателя искра просматривается в виде одной тонкой жилки толщиной до 0,2 мм с параметрами искрового разряда по рис. 5, где длительность импульсов 1 — 2 составляет около 0,4 мс. С подключением цепочки искра становится более яркой и широкой, видно много искровых разрядов в прямом и обратном направлениях — так называемая мохнатая искра.

Измерение амплитуды и длительности выходного импульса. Этот параметр блока является основным, определяющим его эффективность. Большинство авторов, представивших свои конструкции в технических изданиях за период 1976—1983 гг., не приводили данных о длительности искрового разряда, его характере, а также о схеме и методике его измерения.

Для измерения необходим генератор импульсов управления с регулируемой частотой следования в пределах 200 Гц. При отсутствии его потребуется автономный распределитель зажигания, вращаемый электродвигателем постоянного тока с переходной муфтой. Электродвигатель запитывают от зарядного устройства через реостат, для того чтобы регулировать скорость вращения валика распределителя.

Схема измерения параметров разряда представлена на рис. 7. Выбор измерительного сопротивления продиктован удобством масштаба отсчета и рассмотрения осциллограммы, а также соображениями техники безопасности. Зазор искрового промежутка свечи — не менее 1,5 мм.

Для реальной оценки длительности искрового разряда с учетом компрессии двигателя были проведены дополнительные измерения на разряднике с зазором 7 мм и на работающем двигателе, когда на вход осциллографа подавался сигнал с трех витков изолированного провода, намотанного на высоковольтный провод первого цилиндра. Результаты измерений примерно совпали. На режиме холостого хода двигателя длительность искрового разряда, равная 1,3 мс, сохраняется. На большей частоте вращения коленчатого вала двигателя остается шесть импульсов с длительностью 1,1 мс, а напряжение на накопительном конденсаторе уменьшается с 400 до 350 В. Амплитуда разрядных импульсов уменьшилась также на 10 %.

Автор имел возможность проверить БТЗ на стенде при частоте вращения валика распределителя до 720 об/мин с подключенным разрядником с зазором 7 мм. Длительность искрового разряда при этом уменьшалась до 1,0 мс, напряжение на накопительном конденсаторе снижалось до 320 В, а амплитуда разрядных импульсов падала на 25 %.

Для сравнения усовершенствованного блока БТЗ с другими известными устройствами были сняты осциллограммы характера искрового разряда на одном и том же сопротивлении в цепи свечи, равном 14 Ом. На рис. 5 они изображены с соблюдением масштаба амплитуд и длительности искры.

Заключение. Предлагаемая модификация БТЗ была собрана в виде макетного образца и испытана в 1984—1985 гг. на автомобилях ЗАЗ, Москвич-412, ВАЗ-2101. В общей сложности пройдено 15 000 км без каких-либо замечаний и отказов в работе. Блок зажигания в автомобиле ЗАЗ располагается в салоне за задним сиденьем на подставке для улучшения его охлаждения. Размещать его в моторном отсеке не следует из-за высокой температуры в летнее время, а также большой запыленности. В автомобилях Жигули и Москвич блок может быть укреплен под приборным щитком или в другом более удобном месте. Жгут, соединяющий БТЗ с системой зажигания автомобиля, может быть длиной до 1,5 м. На передней панели блока имеются гнезда под штепсельную вилку, куда выведено напряжение +210 В от первого выпрямительного мостика (до удвоения) для пользования в пути электробритвой типа Харьков или другой с коллекторным приводом.

Были проведены измерения содержания СО в выхлопных газах двигателя ЗАЗ с контактной системой зажигания и с блоком БТЗ. С контактной системой после оптимальной подрегулировки карбюратора содержание СО составило 3,3 %. При работе двигателя с блоком БТЗ и выполненных регулировках карбюратора согласно приведенной выше рекомендации с зазором в свечах 1,5 мм содержание СО составило 2,1 %.

Источник: В помощь радиолюбителю, №101.

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:

Популярность: 8 749 просм.

ЭЛЕКТРОННОЕ ЗАЖИГАНИЕ:ВАРИАНТЫ | МОДЕЛИСТ-КОНСТРУКТОР

Кожух УЭЗ — пластмассовый или металлический, высотой 30 мм. С одной стороны он закрепляется гайкой переключателя SА1, а с другой — двумя длинными винтами (стойками), которые одновременно используются для крепления хомута «М», лепестков 3 и 7. Кожух должен охватывать монтажную плату и несколько свисать с нее, чтобы надежно защищать устройство от попадания воды или масла. Для охлаждения радиатора транзистора VT1 в плате и в верхней части боковой стороны кожуха, прилегающей к радиатору со стороны вывода «ПР», просверлено несколько отверстий.

Устройство электронного зажигания некритично к возможному расположению деталей, и его конструкция может быть

любой. Однако при монтаже УЭЗ следует учитывать, что радиатор транзистора VT1, выводы «Б», «Пр» и «1» находятся под напряжением, поэтому на них нужно надеть хлорвиниловые трубки.

Соединения с переключателем SA1 и эмиттера транзистора с лепестками VT7 следует выполнять проводом сечением не менее 0,5 мм2. Схемы подключения УЭЗ к системе зажигания автомобиля с катушками Б-117 и Б-115В показаны на рисунке 5. Провод от Б-115В, идущий к реле стартера, следует отключить от катушки зажигания.

Детали УЭЗ. Все резисторы типа МЛТ. Диод VD3 должен иметь допустимое обратное напряжение не менее 350 В и прямой ток не менее 100 мА. Конденсаторы С2 и СЗ — К53-1 с рабочим напряжением 15 В. Можно использовать конденсатор К53-4 и другие, способные работать при температуре —40°С… +70°С. С1 — К53-1А, К53-4, лучше металлобумажные МБГП, МБГЧ.

В качестве транзистора VT2 можно использовать КТ503, КТВ15, а вместо КТВ09А — КТ704А (В). Взамен резистора R2 лучше установить лампу СМ-37, которая позволит контролировать работу УЭЗ, контактов прерывателя и будет служить индикатором при установке начального угла опережения зажигания. Кроме СМ-37 можно использовать коммутаторные лампочки на напряжение 24 В с током до 100 мА.

До установки УЭЗ на автомобиль следует проверить его под током. Для этого к клеммам «Б» и «М» подключают, соблюдая полярность, источник питания напряжением 6—12 В, а к клеммам «Б» и «1» — контрольную электролампу на 12 В мощностью не более 5 Вт. При отсутствии ошибок в монтаже она не должна гореть. Затем, периодически замыкая между собой клеммы «Пр» и «М», убеждаются, что при любом положении переключателя SА1 контрольная лампа загорается в такт замыкания этих клемм.

Установите переключатель SА1 в положение «Э». Удерживая в замкнутом состоянии клеммы «Пр» и «М», убеждаются, что контрольная лампа, вспыхнув, начинает относительно медленно гаснуть. После этого УЭЗ можно установить на автомобиль. Двигатель будет работать нормально. Если все же с увеличением оборотов он работает ненормально, то это указывает на увеличенный зазор между контактными пластинами прерывателя и его необходимо незначительно уменьшить.

Для гарантии длительной надежной работы желательна полная проверка УЭЗ. Проводят ее в следующей последовательности:

1. Включают амперметр постоянного тока на 5 А в цепь провода, идущего от замка зажигания к клемме «Б» катушки зажигания (к ней должна быть подключена и клемма «Б» УЭЗ). Переключатель БА1 устанавливают в положение «электронное зажигание».

2. Включают зажигание и убеждаются, что амперметр покажет бросок тока около 3 А с последующим его уменьшением до 0,05—0,1 А (при наличии утечки конденсатора С2 этот ток может быть больше 0,1 А, но не должен превышать 1,1 А). Если ток не спадает, то немедленно выключите зажигание — УЭЗ неисправно. Когда броска тока нет, проверните немного коленчатый вал (контакт прерывателя мог оказаться разомкнутым). При слабом броске тока необходимо уменьшить сопротивление резистора R6.

3. Запускают двигатель и измеряют ток, потребляемый системой зажигания. Если ток больше 1,1 А, его уменьшают незначительным увеличением зазора контактной системы прерывателя. Прогревают двигатель.

4. Увеличивая обороты двигателя, следят за показаниями амперметра. Ток вначале может возрастать, но не превышать 1,1 А, а затем уменьшаться до 0,6—0,7 А. Если ток меньше 0,6 А, необходимо увеличить сопротивление резистора 1?1 (с 22 до 27 кОм), несмотря на то, что двигатель может устойчиво, работать на всех оборотах. В процессе эксплуатации УЭЗ никакой подстройки, не требует.

Для использования УЭЗ на мотоциклах рекомендуется:

1. Уменьшить величины сопротивлений резисторов в два раза, а резистора R5 до 1,5 кОм.

2. Емкости конденсаторов увеличить в два раза.

3. Измерить ток, протекающий через первичную обмотку катушки (трансформатора) зажигания, на больших оборотах при обычном зажигании.

4. Установить на мотоцикл УЭЗ и произвести его проверку и настройку аналогично выполняемой на автомобиле. При этом может понадобиться изменить емкость конденсатора С1.

Протекающий от замка зажигания к катушке ток не должен превышать 1,1 А. При напряжении питания 6 В можно использовать микросхему К149КТ1Б.

Транзисторный вариант УЭЗ значительно упростится, если исключить из схемы переключатель 5А1 и элементы, обеспечивающие задержку отпирания транзисторов УТ2 и УТЗ. Принципиальная схема и печатная плата упрошенного варианта электронного зажигания — на рисунках 6 и 7.

Недостатками такого УЭЗ являются необходимость его демонтажа при переходе на обычное зажигание; более нагруженный режим работы транзисторов, а также то обстоятельство, что средний ток, протекающий через катушку зажигания при работающем двигателе, почти такой же, как при обычном зажигании. Это не исключает нагрева катушки зажигания. Однако минимум деталей, простота конструкции и независимость характеристик устройства от величины зазора между контактными пластинами прерывателя все же дают ряд преимуществ последнего варианта УЭЗ перед предыдущими.

Б. КРУТЛНОВ, г. Харьков

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Рекомендуем почитать
  • ЛАМПЫ ПОСЛУЖАТ ДОЛЬШЕ Не секрет, что галогенные лампы, применяемые в автомобилях, нередко выходят из строя. Происходит это в результате броска тока, неминуемо возникающего всякий раз при включении, когда.
  • РЕЛЕ ВРЕМЕНИ ЗА ПОЛЧАСА Всего 30 минут займет сборка простого и надежного реле времени, которое в заданный момент (в интервале 1—11 ч) включит или выключит любой домашний электроприбор мощностью до 0,5 кВт.

Электронное зажигание: принцип работы системы

Одним из основных условий успешного старта двигателя и поддержания его работы на разных режимах является нормальное функционирование системы зажигания. Современным вариантом исполнения является электронное зажигание, которое обладает рядом существенных преимуществ.

Следует отметить, что на современном этапе все автомобили с бензиновыми двигателями выпускаются исключительно с таким оборудованием. Электронная начинка отличается только в зависимости от уровня оснащения и типа двигателя.

Назначение и преимущества электронной конструкции

Важную роль системы воспламенения топлива автомобилей не трудно понять, если перечислить основные требования к ее работе:

  1. Образование искры в цилиндре для сгорания бензиново-воздушной смеси в конце такта сжатия.
  2. Обеспечение своевременного момента подачи искры с учетом того, какая схема работы цилиндров реализована в моторе, и с учетом опережения углов зажигания.
  3. Снабжение искры нужным запасом энергии, достаточным для начала процесса горения. Этот параметр зависит от состава смеси, ее плотности и температуры.
  4. Сохранение высокого уровня надежности с учетом ресурса двигателя.

Рабочая схема исполнения возможной системы зависит от типа поколения двигателя, и носит следующие названия:

  • контактно транзисторная система зажигания;
  • бесконтактная система;
  • система зажигания на основе микропроцессора.
Особенности различных типов систем

В первом случае импульс тока передается в нужном направлении при соединении любых двух контактов. За счет наличия вращающихся элементов такая система не является надежной. Кроме того, после очередного ремонта приходится проводить точные настроечные действия своими руками.

Так называемое бэсз является следующим поколением в линейке возможных типов системы. Преимущество заключается в возможности передачи импульса большей энергии без потери на нагрев. Также стоит учитывать, что зажигание бесконтактное практически не имеет периодических регулировочных операций.

Принцип работы электронной конструкции основан на распределении импульсов от катушки зажигания напрямую к потребителю.

В конструкцию входят определенные составные устройства:

  • устройство выключения зажигания;
  • источник питания;
  • преобразующая катушка;
  • провода и свечи цилиндров.
Устройство электронного типа

Чтобы электронная система зажигания эффективно работала, ею управляет электронный блок. Его назначение выражается в приеме, анализе различных данных, и выдача указаний по формированию актуального режима образования искры. Многочисленные датчики, установленные в разных системах автомобилей, в постоянном режиме собирают следующую информацию:

  1. Параметры кривошипно-шатунного механизма. Отслеживается положение коленчатого вала и частота вращения.
  2. Параметры газораспределительного механизма. Контролируется положение распределительного вала.
  3. Работа системы охлаждения мотора. Уточняется рабочая температура и оценивается нагрузка на мотор.
  4. Выхлопная система. Контролируется состав отработанных газов.

Дополнительно производители вводят и другие датчики контроля различных параметров. Например, часто фиксируется процесс детонации, что связывается с низким качеством топлива или указывает на изменившееся октановое число бензина.

Дальнейшее совершенствование автомобилей приводит к появлению таких датчиков:

  • положения электронной педали газа;
  • массового расхода воздуха;
  • давления в топливной магистрали.

Такая разносторонняя информация позволяет не только обеспечить качественный процесс искрообразования, но и значительно улучшает топливную экономичность двигателя. В этом случае вопрос – какое лучше зажигание использовать, отпадает сам собой.

Именно по этой причине все большую популярность приобретает вариант тюнинга, когда установка электронного зажигания своими руками востребована для подержанных автомобилей и мотоциклов.

Единственным недостатком совершенного электронного зажигания с множеством датчиков является трудность доработки двигателя под использование электронного блока управления.

Разместить датчики и научить их согласованно работать – непросто. Поэтому стоит рассмотреть более доступную схему – бесконтактного зажигания.

Работа электронного зажигания

Поступающие сигналы датчиков обрабатываются электронным блоком по разработанному алгоритму. В результате система зажигания подает электронный сигнал на воспламенитель. Это устройство производит включение транзистора, что обеспечивает прохождение тока на первичную обмотку катушки зажигания. В нужный момент времени цепь первичного тока разрывается, повышается напряжение накопленного тока на первичной обмотке. Импульс уходит на нужную свечу.

Вторая рабочая схема носит название конденсаторной. Сгенерированная энергия накапливается в конденсаторе и в нужный момент отводится к соответствующей свече.

В процессе работы анализируется скорость вращения коленчатого вала и нагрузка на двигатель. Это позволяет при необходимости корректировать угол опережения зажигания, увеличивая отдачу двигателя.

Установка электронного зажигания на авто

Таким образом, изучив все нюансы работы и преимущества бсз, понятно желание наделить подержанный автомобиль зажиганием по аналогичной схеме. Логично, что переделать двигатель с установкой многочисленных датчиков не получится, но заменить контактную схему на бесконтактный ее тип в состоянии каждый владелец машины.

Готовим запасные части

На начальном этапе подготавливаем все элементы по заранее спланированной схеме:

  1. Бесконтактный трамблер. Модель подбирают с учетом установленного двигателя на авто. К примеру, модель 1,3 л на ВАЗ-2016 подойдет с индексом 38.3706-01.
  2. Коммутатор. Устройство для прерывания поступающего тока на катушку зажигания.
  3. Катушка зажигания. Устройство с преобразованием тока с 11 вольт до 20 кВ для моделей ВАЗ имеет индекс 27.3705.
  4. Высоковольтные провода подбираем по размеру, а по типу подойдет проводка от современной Нивы.
  5. Свечи зажигания. Особенностью свечей станет установленный заводской зазор между электродами от 0,7 до 0,8 мм.

Прежде чем устанавливать все элементы бесконтактного зажигания, обязательно подготавливаем набор необходимых инструментов:

  • электрическая дрель со сверлом под размер саморезов;
  • два самореза;
  • крестообразная отвертка;
  • набор ключей.
Порядок проведения монтажных работ

Для ответа на вопрос, как установить бесконтактную систему зажигания своими руками, следует изучить последовательность выполнения работ на примере автомобиля ВАЗ шестой серии:

  1. Используем ранее установленный прерыватель-распределитель. Снимаем крышку и демонтируем высоковольтные провода.
  2. Выставляем «линию резистора». Короткими поворотами двигателя добиваемся положения резистора – перпендикулярного по отношению к корпусу мотора. Далее вращение коленчатого вала не допускается.
  3. Делаем отметку размещения трамблера. На корпусе двигателя наносим штрих напротив средней метки устройства регулировки опережения угла зажигания.
  4. Проводим демонтаж ранее установленного прерывателя-распределителя. Отсоединяем его от катушки зажигания и в месте установки на двигатель.
  5. Устанавливаем купленный бесконтактный трамблер. Снимаем верхнюю крышку, и садим в гнездо с учетом ранее установленной метки, закрепляем. Устройство должно быть заранее отрегулировано.
  6. Проводим замену катушки зажигания на место ранее установленного устройства. Подводим питающие провода.
  7. Размещаем все провода по своим местам – высоковольтные провода к свечам зажигания, провод между трамблером и катушкой.
  8. Монтируем коммутатор. Для этого в свободной зоне подкапотного пространства просверливаем отверстия под крепление, и после размещения – включаем в общую схему.
  9. Перед запуском двигателя еще раз проверяем правильность подключения в соответствии со схемой. Ее легко сделать самому или найти в комплекте поставки оборудования.

После запуска двигателя проверьте корректную работу двигателя в разных режимах. Это относится к устойчивости на холостых оборотах, работе под нагрузкой. Оцените расход топлива и состав отработанных газов. Только после этого будьте уверены в высоком качестве проделанной работы.

С уважением, Максим Марков!

Установка своими руками электронное зажигание

Несмотря на то что «классика» ВАЗ 2106 давно снята с производства, на российских просторах эксплуатируется немалое количество этих машин. Поскольку их конструкция устарела, то желание владельцев шестой модели Жигулей усовершенствовать её любыми способами вполне понятно. Один из эффективных вариантов — поставить вместо штатной системы зажигания бесконтактную (сокращённо — БСЗ), где искрообразованием ведает электроника. Процедура замены довольно проста и доступна каждому, кто пожелает улучшить работу двигателя своей «шестёрки».

Что собой представляет БСЗ и как она работает?

Чтобы успешно установить и настроить бесконтактное зажигание, желательно понять принцип действия системы, состоящей из следующих элементов:

  1. Главный распределитель зажигания (иначе — трамблёр). Внутри него установлен фотоэлектрический датчик Холла, вакуумный привод корректировки угла опережения и так называемый бегунок с подвижным контактом.
  2. Катушка, создающая импульс высокого напряжения. Имеет 2 обмотки: первичную, состоящую из малого числа витков толстого провода, и вторичную, намотанную тонкой проволокой с большим количеством витков.
  3. Электронный блок — коммутатор, оборудованный алюминиевым радиатором охлаждения. Последний играет роль крепёжного элемента.
  4. Свечи зажигания, соединённые высоковольтными проводами с трамблёром.
  5. Провода для соединения элементов между собой.

Так выглядит система зажигания классики Жигулей

Для справки. В штатных устаревших системах ВАЗ 2106 внутри распределителя вместо датчика Холла стояла контактная группа, а коммутатора не было вовсе.

Схема работы БСЗ

Первый контакт катушки соединяется через реле замка зажигания с генератором, а второй — с блоком управления. Также от неё к трамблёру идёт высоковольтный провод большого сечения. Из распределителя выходит 2 пучка проводов, соединяющих его с коммутатором и свечами зажигания. Система функционирует по такому алгоритму:

  1. После включения зажигания поворотом ключа в замке на первичную обмотку катушки подаётся напряжение 12 В, отчего возникает электромагнитное поле.
  2. Когда происходит вращение коленчатого вала и один из поршней выходит в верхнюю мёртвую точку (ВМТ), фотоэлектрический датчик посылает сигнал коммутатору, а тот кратковременно разрывает связь катушки с источником напряжения — генератором либо аккумуляторной батареей.
  3. Во время разрыва цепи во вторичной обмотке катушки образуется импульс напряжением от 20 до 24 кВ, передаваемый по проводу большого сечения на бегунок трамблёра.
  4. Подвижный контакт бегунка направляет импульс к той свече зажигания, где поршень вышел в ВМТ. Между её контактами проскакивает мощная искра, воспламеняющая смесь топлива с воздухом в камере сгорания.
  5. Вал распределителя приводится в действие шестерёнчатой передачей, связанной с коленчатым валом. Когда очередной поршень движется к ВМТ, вал поворачивается и подвижный контакт соединяется с другой свечой, а датчик Холла посылает следующий сигнал и цикл искрообразования повторяется.

Справка. В старых системах разрыв цепи производился механическим способом с помощью кулачка на валу трамблёра, нажимающего на контактную группу.

Преимущества бесконтактных систем

Для несведущего автолюбителя главным аргументом в пользу БСЗ является тот факт, что на данный момент ни один производитель не выпускает автомобилей с контактно-кулачковой системой искрообразования. Зарубежные бренды отказались от неё в далёких 80-х годах прошлого столетия, а в Российской Федерации механическое зажигание продержалось вплоть до 90-х. Причины отказа вполне понятны:

  • на контактах постоянно проскакивала искра, отчего они подгорали и требовали частой зачистки;
  • контактная группа изнашивалась достаточно быстро, в среднем её хватало на 15—20 тыс. км пробега, после чего элемент приходилось менять;
  • давал о себе знать износ подшипника, на котором размещались контакты, что вызывало нестабильную работу силового агрегата;
  • растягивались пружины грузиков — балансиров.

Бесконтактное зажигание дает мощную искру, отчего топливо сгорает лучше

Все перечисленные неисправности проявлялись поочерёдно, не давая покоя хозяину «классики» Жигулей. Из-за несовершенной конструкции мощность искры на свечах постоянно снижалась, работа двигателя ухудшалась, а расход топлива увеличивался. Новые системы БСЗ лишены подобных недостатков, они отличаются долговечностью и стабильным искрообразованием. Повысилась и мощность искры, поскольку напряжение выходного импульса возросло от 16—18 кВ до 24 кВ, что способствует лучшему воспламенению топлива.

Примечание. В первое время слабым местом отечественных бесконтактных систем считался коммутатор, быстро выходящий из строя и не подлежащий ремонту. Но позже он был усовершенствован и надёжность работы БСЗ повысилась.

Выбор комплекта электронного зажигания

Поскольку «шестёрки» комплектовались тремя разновидностями двигателей (объёмом 1,3, 1,5 и 1,6 л.), то и комплекты БСЗ для них отличаются по конструкции трамблёра. В моторе 1,3 л. (модель ВАЗ 21063) стоит распределитель с укороченным валом, а в двигателях 1,5 и 1,6 л. (ВАЗ 21061 и 2106 соответственно) этот вал одинаково длинный. Состав комплекта электронного зажигания такой:

  • трамблёр с каталожным номером 38.3706–01 для силового агрегата объёмом 1,3 л. либо 38.37061 — для двигателей 1,5 и 1,6 л.;
  • катушка высокого напряжения с маркировкой 27.3705;
  • электронный блок управления, маркировка — 36.3734 или 3620.3734;
  • провода соединительные.

Внимание! Покупая бесконтактный комплект на «классику» Жигулей, не перепутайте его с изделиями, предназначенными для Нивы ВАЗ 2121, трамблёры внешне очень похожи. Но «нивовская» деталь отличается по техническим характеристикам и маркируется так: 3810.3706, 38.3706–10 или 038.3706–10. Ставить её на «шестёрку» категорически не рекомендуется.

Набор для установки бесконтактного зажигания

Из производителей, продающих свои комплекты зажигания на территории Российской Федерации, наибольшую популярность среди автомобилистов снискали запчасти от фирмы СОАТЭ из г. Старый Оскол. Стоит отметить, что новые свечи марки А-17ДВР, устанавливающиеся на классические ВАЗы с электроникой, в комплект поставки не входят, их придётся приобрести отдельно. Чтобы ощутить результаты замены в полной мере, также рекомендуется поставить новые высоковольтные провода, если вы не меняли их в недавнем прошлом.

Подготовка к замене БСЗ

Работа по снятию старого зажигания и монтажу нового не требует никаких специальных инструментов, приспособлений или приборов. Не нужна и смотровая канава, а всю операцию можно провести на улице при хорошем дневном освещении. Достаточно располагать таким инструментарием:

  • рожковый ключ размером 13 мм для откручивания гайки крепления распределителя;
  • с помощью ключей на 10 и 8 мм снимается катушка;
  • отвёртка плоская и крестообразная;
  • пассатижи;
  • дрель электрическая или ручная со сверлом под диаметры саморезов крепления коммутатора.

Совет. Для удобства выполнения работ возьмите напрокат или у знакомых накидной ключ с длинной рукояткой, надевающийся на гайку храповика и применяющийся для вращения коленчатого вала вручную.

Поворачивать коленвал таким ключом гораздо удобнее

Для начала выполните несколько этапов предварительной разборки:

  1. Откройте капот и отсоедините минусовую клемму аккумулятора.
  2. Снимите со свечей и крышки распределителя высоковольтные провода.
  3. Выкрутите свечи.
  4. Опустите отвёртку в свечное отверстие 1 цилиндра и поворачивайте коленвал до тех пор, пока поршень в нём не достигнет ВМТ. При этом метка на шкиве вала встанет напротив самой длинной риски, нанесённой на блоке цилиндров.

Первым делом надо отключить аккумулятор

Совет. Если ключа под гайку храповика у вас не нашлось, коленчатый вал можно поворачивать, вращая вывешенное заднее колесо автомобиля. Не забудьте зафиксировать машину противооткатными средствами, снять с ручного тормоза и включить 4 или 5 передачу.

Когда 1-й поршень находится в ВМТ, метки на шкиве и блоке должны совпадать

Сопоставив метки и приготовив новые детали, можно приступать к основному этапу работ.

Порядок установки электронного зажигания

Первым делом необходимо демонтировать старую систему, выполняя операции в такой последовательности:

  1. Отключите высоковольтный провод, идущий от катушки, снимите крышку трамблёра и запомните положение бегунка. Для удобства направление можно отметить мелом на клапанной крышке двигателя.
  2. Отсоедините от распределителя провода и вакуумную трубку, идущую от карбюратора. Открутите гайку крепления ключом на 13 мм и снимите элемент с блока цилиндров.
  3. Отверните гайки контактов высоковольтной катушки и снимите провода, запомнив, куда были подключены жилы от реле замка зажигания и тахометра.
  4. Демонтируйте катушку и уберите её в сторону.

Совет. Между трамблёром и посадочным местом блока цилиндров стоит прокладка, не потеряйте её при снятии детали с авто.

Схема подключения элементов электронного зажигания

Выполнив разборку, приступайте к монтажу БСЗ, соблюдая следующий порядок действий:

  1. Переставьте прокладку со старого распределителя на новый и снимите с него крышку. Повернув бегунок в нужном направлении, которое вы наметили мелом, вставьте вал трамблёра в гнездо и зафиксируйте его положение гайкой. Сильно её затягивать не стоит, поскольку ещё придётся регулировать зажигание и отпускать гайку снова.
  2. Вкрутите свечи зажигания, предварительно установив зазор между электродами 0,8—0,9 мм. Поставьте крышку распределителя на место и присоедините высоковольтные провода, соблюдая номера цилиндров (выбиты сверху на крышке).
  3. На место старой катушки закрепите новую. Если контакты на ней расположены наоборот, то сначала ослабьте крепёжный хомут, проверните корпус на 180° и установите деталь на авто.
  4. Прикрепите неподалёку от катушки коммутатор. Сняв бачок омывателя, предварительно просверлите в лонжероне кузова 2 отверстия и прикрутите блок саморезами. Обратите внимание: электронный элемент не должен стоять ниже бачка, чтоб его не залило водой в случае протечки.
  5. Возьмите соединительные провода и подключите электронный блок, трамблёр и катушку согласно схеме (прилагается к комплекту БСЗ). Разобраться в ней несложно: разъем от коммутатора подключается к колодке распределителя, а провода — к контактам «Б» и «К» высоковольтной катушки. Не забывайте о жилах, подключённых ранее к старой катушке (в том числе от тахометра), их нужно присоединить к новому элементу таким же образом.
  6. Наденьте на штуцер мембранного узла трамблёра вакуумную трубку, идущую от карбюратора. На этом установка бесконтактной системы закончена.

Справка. В моделях ВАЗ 2106 последних выпусков уже сделаны отверстия, рассчитанные на монтаж коммутатора. Посмотрите внимательно на лонжероне с левой стороны (по ходу движения машины).

Инструкция по монтажу в фотографиях

Бегунок должен стоять в такой позиции перед снятием трамблера Крышка трамблера снимается путем освобождения двух защелок Ключом на 8 и 10 нужно открутить провода от распределителя С катушки снимается высоковольтный провод и откручиваются жилы, ведущие к замку зажигания и тахометру Таким образом трамблер вынимается из блока цилиндров Провода к новой катушке подключаются так же, как к старой Коммутатор ставится на свободном месте выше бачка омывателя Не перепутайте провода, подключая новый распределитель

Видеоролик о монтаже электронной системы на «классику»

Запуск двигателя и настройка зажигания

Если в процессе замены элементов вы не сдвинули метки, а проводку подключили правильно, то «шестёрка» заведётся сразу же. Дайте ей прогреться минуту-другую, манипулируя педалью акселератора, после чего переходите к настройке зажигания. Её выполняют двумя способами:

  • наиболее распространённая методика – «на слух»;
  • с помощью специального прибора — стробоскопа.

Совет. Если двигатель автомобиля не завёлся и при вращении стартера не подаёт признаков жизни, то следует проверить правильность подключения высоковольтных проводов. Причина вторая: во время монтажа вы повернули крышку распределителя на 180°, отчего бегунок стал передавать импульс на 4-й цилиндр вместо первого и наоборот.

Угол опережения зажигания регулируется поворотом корпуса распределителя

Регулировка зажигания «на слух» производится так:

  1. При работающем двигателе ослабьте гайку крепления трамблёра.
  2. Потихоньку поворачивайте его за и против часовой стрелки, добиваясь наиболее стабильной работы силового агрегата. Угол поворота не должен превышать 15°.
  3. Уловив положение чёткой работы двигателя, окончательно затяните гайку распределителя.

С помощью стробоскопа угол опережения зажигания устанавливается не в пример точнее. Если вам удалось раздобыть этот прибор или взять где-то на время, то подключите его к клеммам аккумулятора и высоковольтному проводу первого цилиндра. Запустите мотор и аккуратно поднесите мигающую лампу к меткам на блоке. Стробоскоп поможет увидеть положение риски, выбитой на шкиве, при работающем двигателе. Теперь вы можете ослабить гайку трамблёра и поворотом корпуса добиться совмещения этой риски с последней, самой короткой меткой.

Так выглядит стробоскоп для регулировки угла опережения

После регулировки прогрейте машину до рабочей температуры и попробуйте проехать на ней в разных режимах. Если при резком нажатии на педаль газа слышен стук поршневых пальцев, то вы имеете дело с детонацией, вызванной слишком ранним зажиганием. Ослабьте крепление трамблёра и поверните его по часовой стрелке на 1—2°, не более. Стук должен исчезнуть.

Совет. После монтажа БСЗ нередко случается, что обороты двигателя на холостом ходу возрастают из-за лучшего искрообразования. Частота оборотов уменьшается до значения 850—900 об/мин винтом количества топлива. В карбюраторах типа «Озон» это винт больших размеров, находящийся справа (по ходу движения) в нижней части агрегата. В карбюраторах «Солекс» это пластиковая рукоятка, выглядывающая из задней части и упирающаяся в ось заслонки. Винт «качества» без знания дела трогать не допускается!

Видео о настройке бесконтактного зажигания

Если вы сняли распределитель и высоковольтные провода с крышкой без совмещения меток, то правильно выставить зажигание по новой вам поможет представленный видеоматериал:

Эксплуатация автомобиля с электронной системой разительно отличается от езды на старом зажигании. Двигатель работает гораздо ровнее и стабильнее, а очистка контактной группы уходит в прошлое. Но владельцу ВАЗ 2106 не помешает возить в запасе датчик Холла на случай поломки штатного. Эта деталь ремонту не поддаётся, хотя и ломается достаточно редко.

Источник: http://VazWeb.ru/desyatka/elektrooborudovanie/kak-ustanovit-sistemu-beskontaktnogo-zazhiganiya-na-avtomobile-vaz-2106-svoimi-rukami.html 

Похожие новости:

Авто тюнинг своими руками: Электронное зажигание на ВАЗ

Возможность замены классической контактной системы зажигания на бесконтактную. Напомним: отличие между этими системами заключается в способе создания импульса высокого напряжения, подаваемого к свечам зажигания. В классической системе зажигания в этом процессе задействованы пара контактов, которые размыкаются кулачками вала прерывателя. «Минус» такой конструкции – необходимость систематических регулировок зазоров между контактами, недостаточно точный и нестабильный момент искрообразования на свечах, малая надежность и долговечность из-за выхода из строя конденсатора прерывателя и подгорания контактов.

В связи с развитием электроники в 80-е годы на смену контактным системам зажигания пришли бесконтактные. Контактную пару в них заменили специальные датчики: электромагнитный, полупроводниковый (датчик Холла), параметрический фотодатчик и пьезодатчик. Они более точно и стабильно определяют момент искрообразования и, работая в паре с электронным коммутатором, создают импульс высокого напряжения – 25 – 27 тыс. вольт (у контактных систем – всего 15 – 20 тыс. вольт), который дает большую искру со всеми вытекающими отсюда последствиями – лучшее воспламенение и более эффективное сгорание топливно-воздушной смеси, повышение приемистости, снижение расхода топлива, улучшение пусковых характеристик (особенно при низких температурах и при повышенной влажности). На этапе внедрения электронного зажигания в советские автомобили (первыми были «восьмерки» и «девятки») первоначально ее невзлюбили из-за низкой надежности. Виновником был коммутатор (36.3734), который из-за конструкционной недоработки выходил из строя через каждые 15 – 20 тыс. км. После появления новых коммутаторов проблемы электронного зажигания «Жигулей» были решены.

Устанавливать электронное зажигание на тольяттинскую «классику» начали в 1988 году, причем такой привилегией пользовались не все. А «копейки» и ее модификации (21011, 21013) вообще такой новинки не дождались. Хотя установить электронное зажигание можно на любые модели «классики». Для этого необходим прерыватель-распределитель (трамблер) с датчиком Холла, катушка зажигания 2108, коммутатор (36.3734; 3620.3734; 76.3734; HIM-52) и «восьмерочный» жгут (электропроводка) системы зажигания.

Переоборудование можно осуществить самостоятельно. Первый этап модернизации – снятие контактного прерывателя и установка нового бесконтактного – с датчиком Холла. При покупке следует помнить, что в зависимости от объема двигателя прерыватели могут отличаться длиной валика. Для двигателей объемом 1,2 л и 1,3 л предназначены прерыватели с коротким валиком (38.3706-01), а при объеме 1,5 л и 1,6 л – прерыватели с длинным валиком (38.3706). Так как коротковальные найти достаточно сложно, можно использовать длинновальный. В этом случае необходима еще одна деталь – утолщенное кольцо-прокладка, которая устанавливается на седло прерывателя, чем укорачивает длину валика

Для выполнения установки вам понадобится комплект свечей зажигания для БСЗ. Разница между обычными свечами и свечами для БСЗ в том, что обычные быстрее греются и выходят из строя, а также они не рассчитаны на сильную искру. Подойдет комплект от «NGK» №2. Еще потребуется комплект высоковольтных проводов для БСЗ, можно прикупить польского производства — «TESLA». Приступаем к работе. Сначала нужно снять старые высоковольтные провода, далее снимаем крышку трамблера, выставляем при помощи стартера бегунок, как на рис.. Следующий шаг — найти на корпусе трамблера, у основания 5 меток и маркером( можно любым, например черным) делаем отметину на блоке цилиндров напротив средней метки на трамблере. Это нужно для того, чтобы при установке устройства попасть в нужное положение. Имеется в виду угол опережения зажигания( чтобы завести машину)

Второй этап – замена катушки зажигания. «Восьмерочная» (27.3705) по своим размерам не отличается от «копеечной» (Б-117А), поэтому проблем с установкой не существует.

Третий этап – установка коммутатора. Лучшее для него место – под левой фарой у «окна» решетки радиатора. Наличие потока встречного воздуха в этом месте обеспечивает эффективное охлаждение этого нагревающегося электронного узла. Для фиксации коммутатора в брызговике необходимо просверлить два отверстия, а для крепления можно использовать саморезы. После установки, во избежание коррозии кузова, с внутренней стороны брызговика саморезы следует замазать антикоррозионной мастикой или краской.

Последний самый важный этап – подключение системы к электрической сети. Чтобы это осуществить, необходим «восьмерочный» жгут (электропровод), который включает набор изолированных проводов, четыре разъема и три одиночных вывода. Малый, трехконтактный разъем подключается к прерывателю-распределителю, а большой с семью проводами – к коммутатору. Два других разъема остаются свободными, так как предназначены для подключения к блоку ЭПХХ – большой с пятью проводами, и к центральной электропроводке – малый с шестью проводами. Не подключаются они из-за отсутствия в «копейках» карбюратора с системой принудительного холостого хода и колодки диагностики. Не забудьте из присоединенных проводов прикрутить к «массе» и черный провод, который идет от блока управления к трамблеру — рис. Далее, вставляем второй конец пуска проводов в трамблер. У вас должно остаться 2 незадействованных провода, их прикрутите к катушке.

Клемма черного провода «массы» из жгута зажигания подключается к кузову – например, саморезом, которым крепится коммутатор. К катушке зажигания подключается два провода (вывода) из жгута системы зажигания: к клемме Б – голубой с красной риской; к клемме К – коричневый с синей риской. Кроме того, к клемме Б подключается зеленый провод из центрального жгута электропроводки автомобиля. Если жгут не заводской, провода могут не иметь цветных рисок. Кроме «восьмерочного» жгута зажигания, можно использовать и жгут от ВАЗ-21213 «Тайга». Он не имеет одного лишнего разъема (малого), однако не очень удобен из-за большой длины. Схема подключения высоковольтных проводов не изменяется.

Если после установки электронного зажигания двигатель станет «вялым» и потеряет свою приемистость во время разгонов, необходимо проверить работу центробежного регулятора прерывателя. Стягивающие пружины грузиков могут оказаться сильно жесткими, поэтому их следует заменить. От центробежного регулятора старого прерывателя они, как правило, не подходят, поэтому следует поискать на рынке или обратиться к автоэлектрику.

Для большей уверенности в надежности новой системы зажигания неплохо бы заменить высоковольтные провода, так как старые могут не выдержать более высокого напряжения, и свечи зажигания, установив А17ДВР или зарубежные аналоги с большим межэлектродным зазором (0,7-0,8 мм).

При подборе комплектующих новой системы зажигания существуют свои нюансы. На авторынках и в магазинах встречаются элементы электронного зажигания, которые изготовлены в разных странах – России, Венгрии, Болгарии. Если есть возможность, то предпочтение лучше отдать зарубежной продукции (российские детали воспринимаем как наши). Если венгерские или болгарские узлы изначально (после установки) оказались исправными, значит, как правило, прослужат они достаточно долго. Российские – дешевле, но не всегда надежные – могут служить долго, а могут выйти из строя уже через неделю или месяц.

Электронное зажигание своими руками | Юридические услуги

Большим минусом старых систем зажигания является быстрота износа контактов прерывателя. Обратной же стороной этой медали является то, что эти системы с многоискровой механической распределителем, его называют также «Трамблер»ом, простота, которая обеспечивается 2-ной функцией механизма распределителя. Для того чтобы повысить вторичное напряжение, которое генерируется такой системой, можно воспользовавшись приборами, на основе полупроводников, которые будут работать в качестве ключей управления. Именно они будут прерывать ток в первичной обмотке катушки. В качестве таких ключей сегодня используются транзисторы, которые генерируют токи до десяти Ампер без всяких повреждений и искр. Существуют экземпляры, построенные на базе тиристоров, но из-за своей нестабильности широкого применения они не нашли.

Простая схема электронного зажигания

Резистор R6 предназначен для ограничения тока тиристора и для его чёткого запирания. Его подбирают в зависимости от используемого тиристора так, чтобы ток через него не мог превысить максимальный для тиристора и, самое главное, чтобы тиристор успевал запираться после разряда ёмкостей С4, С5. Мостики VD11, VD12 выбираются по максимальному напряжению с катушек магнеты. Катушек, заряжающих ёмкости для высоковольтного разряда, две (это решение также гораздо экономичнее и эффективнее чем преобразователь напряжений). Такое решение пришло потому, что катушки имеют разное индуктивное сопротивление и их индуктивные сопротивления зависят от частоты вращения магнитов, т.е. и от частоты вращения вала.

Схема блока электронного зажигания

Очевидные преимущества системы электронного зажигания

  • свечной зазор всегда «пробивается» искрой и не зависит от величины оборотов двигателя;
  • коммутатор системы образования искры не теряет свою работоспособность при снижении напряжения в бортовой сети мотоцикла до 12 вольт;
  • нет трущихся деталей и ломаться не чему;
  • момент зажигания выставляется при регулировке электроники один раз;
  • двигатель останавливается и катушка искрообразования обесточена и не подвержена перегреву.

Бесконтактное зажигание на иж – разбираемся с непонятными терминами

  1. БСЗ – бесконтактная система зажигания;
  2. Модулятор – металлический диск (сталь толщиной 0,8-1,0 мм), пластина, шторка. Устанавливается на оси механизма опережения зажигания (валу трамблера).

Автоэлектроника своими руками

Устанавливаем любой из цилиндров двигателя мотоцикла «Юпитер» в точку образования искры. Желательно использовать для этой цели стробоскоп. Включаем зажигание. Поворачиваем модулятор по направлению вращения коленвала.

Как только вольтметр покажет резкое изменение напряжения – останавливаем вращение и производим фиксацию положения модулятора. Аналогично проверяем искрообразование для второго цилиндра двигателя. Уже ничего не крутим, производим только проверку. Двигатель должен работать равномерно, без перебоев на любых оборотах.

На этом, можно сказать, что бесконтактная система зажигания на иж юпитер 5 установлена. Мотоциклы любят уход. Установка бсз – подарок двигателю и самому хозяину.

Установка электронного зажигания ваз 2106

Желательно намотать такие катушки в магнете, чтобы эти стабилитроны включались только на самой верхушке, только на самом максимально возможном напряжении (в последней модификации стабилитроны не устанавливались, т.к. напряжение итак никогда не превышало 200 В). Две ёмкости: С4 и С5 для увеличения мощности искры, в принципе схема может и на одной работать. Важно! Диод VD10 (КД411АМ) подбирался по импульсным характеристикам, другие очень грелись, не выполняли в полной мере свою функцию защиты от обратного выброса. К тому же через него идёт обратная полуволна колебания в катушке зажигания, что увеличивает длительность искры почти в два раза. Ещё эта схема показала нетребовательность к катушкам зажигания – ставились любые какие были под рукой и все работали безупречно (на разные напряжения, под разные системы зажигания — прерывательные, на транзисторном ключе).

Электронное зажигание на иж юпитер 5 — стоит ли делать

Приветствую уважаемых коллег-радиолюбителей. Многие имели дело с очень простыми, и потому очень не надёжными системами зажигания в мотоциклах, мопедах, лодочных моторах и подобных изделиях прошлого века. Был и у меня мопед. Искра у него пропадала так часто и по стольким разным причинам, что это очень надоедало. Вы, вероятно, и сами видели постоянно встречающихся на дорогах мотолюбителей без искры, которые пытаются завестись с разбега, с горки, с толкача…

В общем пришлось придумывать свою систему зажигания. Требования были такие:

  • должна быть максимально проста, но не в ущерб функциональности;
  • минимум переделок в месте установки;
  • питание безаккумуляторное;
  • улучшение надёжности и мощности искры.

Всё это, или почти всё, было реализовано и прошло многолетнюю проверку.

Электронное зажигание своими руками

Бронепровод лучше использовать силиконовый, хотя я и на обычном, медном ездил. Провод можно просто обрезать ножом у основания родного надсвечника и крепления в катушку. И вкрутить в родную люльку и катушку зажигания как обычный, медный бронепровод.На электронке езжу уже год, никаких проблем не было, забыл что такое выставлять зажигание.

Заводится с пол пинка. По расходу топлива получается чуток экономнее. мотоцикл резвый, хорошо отзывается на ручку газа. Устанавливайте и себе такую систему, и убедитесь в её преимущиствах.

Электронное зажигание своими руками на москвич

Отметим, что заменив заводскую систему зажигания на бесконтактную, вы не только сможете больше не испытывать большую часть проблем с зажиганием, но и получите некоторые дополнительные преимущества, в числе которых, большая динамичность транспортного средства, а также более простой пуск двигателя при отрицательных температурах.Так же при запуске большую роль играет датчик холостого хода,о неисправностях которого вы можете получить информацию на нашем сайте.В чем разница между системой зажигания с бесконтактной передачей электрической искры и заводской системой зажигания? В отличие от заводской конструкции зажигания, на бесконтактной, для замыкания и размыкания цепи используется открытие и закрытие транзистора выхода. Благодаря такой конструкции, повышается напряжение на свечах транспортного средства, а также искровой заряд начинает выдавать большее количество энергии.

Электронное зажигание своими руками на оппозит

Плюс к этому, благодаря такой конструкции, напряжение на электродах свечей автомобиля не падает на при низких оборотах двигателя, что положительно сказывается на пуске двигателя в неблагоприятных условиях. Также, вы должны иметь ввиду, что, несмотря на то, что катушки заводской системы зажигания и бесконтактной системы зажигания имеют один и тот же набор проводов, вы должны обязательно проверять правильность их подключения, так как не редко катушки бесконтактной системы зажигания разворачиваются на кронштейне на сто восемьдесят градусов. Что входит в комплект системы передачи электрической искры к системе цилиндров по бесконтактной технологии? Система передачи электрической искры к системе цилиндров по бесконтактной технологии на «шестерку», состоит из пяти основных компонентов, с которыми вы можете ознакомиться ниже: 1.

Многоискровое электронное зажигание своими руками

Наиболее широкое использование в качестве управляемых ключей нашли мощные транзисторы, способные коммутировать токи амплитудой до 10 А в индуктивной нагрузке без какого-либо искрения и механического повреждения, характерных для контактов прерывателя, также возможно применение силовых тиристоров, но широкой промышленной реализации в системах зажигания с накоплением энергии в индуктивности они не имели. Один из способов улучшения батарейной системами зажигания переделка ее в контактно-транзисторную систему зажигания (КТСЗ). На рисунке ниже приведена принципиальная схема конденсаторно-транзисторного устройства зажигания. Это устройство позволяет формировать искру зажигания с большой длительностью, благодаря этому процесс сгорания становится близким к оптимальному в большом диапазоне изменения оборотов двигателя и его нагрузки.

Author Info
Николай Новиков

Авто тюнинг своими руками: Электронное зажигание на ВАЗ

Возможность замены классической контактной системы зажигания на бесконтактную. Напомним: отличие между этими системами заключается в способе создания импульса высокого напряжения, подаваемого к свечам зажигания. В классической системе зажигания в этом процессе задействованы пара контактов, которые размыкаются кулачками вала прерывателя. «Минус» такой конструкции – необходимость систематических регулировок зазоров между контактами, недостаточно точный и нестабильный момент искрообразования на свечах, малая надежность и долговечность из-за выхода из строя конденсатора прерывателя и подгорания контактов.

В связи с развитием электроники в 80-е годы на смену контактным системам зажигания пришли бесконтактные. Контактную пару в них заменили специальные датчики: электромагнитный, полупроводниковый (датчик Холла), параметрический фотодатчик и пьезодатчик. Они более точно и стабильно определяют момент искрообразования и, работая в паре с электронным коммутатором, создают импульс высокого напряжения – 25 – 27 тыс. вольт (у контактных систем – всего 15 – 20 тыс. вольт), который дает большую искру со всеми вытекающими отсюда последствиями – лучшее воспламенение и более эффективное сгорание топливно-воздушной смеси, повышение приемистости, снижение расхода топлива, улучшение пусковых характеристик (особенно при низких температурах и при повышенной влажности). На этапе внедрения электронного зажигания в советские автомобили (первыми были «восьмерки» и «девятки») первоначально ее невзлюбили из-за низкой надежности. Виновником был коммутатор (36.3734), который из-за конструкционной недоработки выходил из строя через каждые 15 – 20 тыс. км. После появления новых коммутаторов проблемы электронного зажигания «Жигулей» были решены.

Устанавливать электронное зажигание на тольяттинскую «классику» начали в 1988 году, причем такой привилегией пользовались не все. А «копейки» и ее модификации (21011, 21013) вообще такой новинки не дождались. Хотя установить электронное зажигание можно на любые модели «классики». Для этого необходим прерыватель-распределитель (трамблер) с датчиком Холла, катушка зажигания 2108, коммутатор (36.3734; 3620.3734; 76.3734; HIM-52) и «восьмерочный» жгут (электропроводка) системы зажигания.

Переоборудование можно осуществить самостоятельно. Первый этап модернизации – снятие контактного прерывателя и установка нового бесконтактного – с датчиком Холла. При покупке следует помнить, что в зависимости от объема двигателя прерыватели могут отличаться длиной валика. Для двигателей объемом 1,2 л и 1,3 л предназначены прерыватели с коротким валиком (38.3706-01), а при объеме 1,5 л и 1,6 л – прерыватели с длинным валиком (38.3706). Так как коротковальные найти достаточно сложно, можно использовать длинновальный. В этом случае необходима еще одна деталь – утолщенное кольцо-прокладка, которая устанавливается на седло прерывателя, чем укорачивает длину валика

Для выполнения установки вам понадобится комплект свечей зажигания для БСЗ. Разница между обычными свечами и свечами для БСЗ в том, что обычные быстрее греются и выходят из строя, а также они не рассчитаны на сильную искру. Подойдет комплект от «NGK» №2. Еще потребуется комплект высоковольтных проводов для БСЗ, можно прикупить польского производства — «TESLA». Приступаем к работе. Сначала нужно снять старые высоковольтные провода, далее снимаем крышку трамблера, выставляем при помощи стартера бегунок, как на рис.. Следующий шаг — найти на корпусе трамблера, у основания 5 меток и маркером( можно любым, например черным) делаем отметину на блоке цилиндров напротив средней метки на трамблере. Это нужно для того, чтобы при установке устройства попасть в нужное положение. Имеется в виду угол опережения зажигания( чтобы завести машину)

Второй этап – замена катушки зажигания. «Восьмерочная» (27.3705) по своим размерам не отличается от «копеечной» (Б-117А), поэтому проблем с установкой не существует.

Третий этап – установка коммутатора. Лучшее для него место – под левой фарой у «окна» решетки радиатора. Наличие потока встречного воздуха в этом месте обеспечивает эффективное охлаждение этого нагревающегося электронного узла. Для фиксации коммутатора в брызговике необходимо просверлить два отверстия, а для крепления можно использовать саморезы. После установки, во избежание коррозии кузова, с внутренней стороны брызговика саморезы следует замазать антикоррозионной мастикой или краской.

Последний самый важный этап – подключение системы к электрической сети. Чтобы это осуществить, необходим «восьмерочный» жгут (электропровод), который включает набор изолированных проводов, четыре разъема и три одиночных вывода. Малый, трехконтактный разъем подключается к прерывателю-распределителю, а большой с семью проводами – к коммутатору. Два других разъема остаются свободными, так как предназначены для подключения к блоку ЭПХХ – большой с пятью проводами, и к центральной электропроводке – малый с шестью проводами. Не подключаются они из-за отсутствия в «копейках» карбюратора с системой принудительного холостого хода и колодки диагностики. Не забудьте из присоединенных проводов прикрутить к «массе» и черный провод, который идет от блока управления к трамблеру — рис. Далее, вставляем второй конец пуска проводов в трамблер. У вас должно остаться 2 незадействованных провода, их прикрутите к катушке.

Клемма черного провода «массы» из жгута зажигания подключается к кузову – например, саморезом, которым крепится коммутатор. К катушке зажигания подключается два провода (вывода) из жгута системы зажигания: к клемме Б – голубой с красной риской; к клемме К – коричневый с синей риской. Кроме того, к клемме Б подключается зеленый провод из центрального жгута электропроводки автомобиля. Если жгут не заводской, провода могут не иметь цветных рисок. Кроме «восьмерочного» жгута зажигания, можно использовать и жгут от ВАЗ-21213 «Тайга». Он не имеет одного лишнего разъема (малого), однако не очень удобен из-за большой длины. Схема подключения высоковольтных проводов не изменяется.

Если после установки электронного зажигания двигатель станет «вялым» и потеряет свою приемистость во время разгонов, необходимо проверить работу центробежного регулятора прерывателя. Стягивающие пружины грузиков могут оказаться сильно жесткими, поэтому их следует заменить. От центробежного регулятора старого прерывателя они, как правило, не подходят, поэтому следует поискать на рынке или обратиться к автоэлектрику.

Для большей уверенности в надежности новой системы зажигания неплохо бы заменить высоковольтные провода, так как старые могут не выдержать более высокого напряжения, и свечи зажигания, установив А17ДВР или зарубежные аналоги с большим межэлектродным зазором (0,7-0,8 мм).

При подборе комплектующих новой системы зажигания существуют свои нюансы. На авторынках и в магазинах встречаются элементы электронного зажигания, которые изготовлены в разных странах – России, Венгрии, Болгарии. Если есть возможность, то предпочтение лучше отдать зарубежной продукции (российские детали воспринимаем как наши). Если венгерские или болгарские узлы изначально (после установки) оказались исправными, значит, как правило, прослужат они достаточно долго. Российские – дешевле, но не всегда надежные – могут служить долго, а могут выйти из строя уже через неделю или месяц.

Источник http://koleso70.ru/transmission/elektronnoe-zazhiganie-dlya-avtomobilya-sistemy-zazhiganiya.html

Источник http://carwin-motors.ru/zamena/harakteristika-vysokovoltnyh-provodov-zazhiganiya-dlya-avto-proverka-i-remont.html

Источник http://motorsmarine.ru/vaz-2110/elektronnoe-zazhiganie-dlya-avtomobilya-svoimi-rukami.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: