Бесконтактное зажигание — как оно работает? Система зажигания автомобиля Контактно-транзисторная система зажигания.

Содержание

Эволюция систем зажигания, принцип работы

Пары бензина, сгорая в цилиндрах двигателя, дают энергию для движения автомобиля. Сам по себе процесс сгорания не начинается, его инициализацию осуществляет система зажигания. С самого начала появления бензиновых моторов это производилось механическим способом. С течением времени у него было выявлено множество недостатков и замечаний в работе, в том числе сложность в эксплуатации. Появление электронных компонентов (транзисторов, тиристоров и т.д.) позволило преодолеть эти недостатки, т.к. была создана бесконтактная система зажигания (БСЗ).

Для чего оно нужно и каким бывает

Горючая смесь в цилиндрах двигателя должна воспламеняться в конце второго такта – сжатия, когда поршень располагается в верхнем положении. Здесь смесь находится под самым сильным давлением, и при рабочем ходе поршня будет совершена максимальная работа. Именно в этот момент на свече должна появиться искра, которая и воспламенит горючую смесь.
Для этого служит зажигание. Было разработано несколько различных вариантов, но на автомобиле обычно используется батарейное (контактное) зажигание.

Контактное

контактно-транзисторное зажигание

Как оно работает, должно быть понятно из описания к приведенному ниже рисунку.

Когда ключ вставлен в замок (Contactor), ток протекает от АКБ (Battery) через бобину или катушку зажигания (Ignition Coil) и контакты прерывателя (Contakt breaker). Этот ток образует магнитное поле, в которое попадает вторичная обмотка Ignition Coil. Когда контакты прерывателя размыкаются, через первичную обмотку прекращается протекание тока, во вторичной обмотке благодаря эффекту самоиндукции создается высоковольтное напряжение, подаваемое через распределитель (Distributor) на нужную свечу (spark plugs).

При поступлении этого напряжения на свечу, образуется искра, от чего воспламеняется топливная смесь. Вот примерно так работает контактная (батарейная) система зажигания (КСЗ). В том виде, как описано выше, она была создана еще для первых автомобилей. Здесь приведен только общий принцип ее работы. На самом деле, даже у старых машин, например, «классика» ВАЗ, дополнительно используется такие устройства, как вакуумный и центробежный регуляторы, дающие возможность изменять момент генерации искры в зависимости от скорости движения и нагрузки на автомобиль.

Недостатки подобной системы

Несмотря на все дополнительные устройства, описанная система зажигания, установленная на автомашины ВАЗ 2107,2016, имеет довольно серьезные недостатки. Из них следует отметить:

  1. Протекание значительного по величине тока через прерыватель, что вызывает подгорание его контактов, следствием чего будет увеличение между ними зазора. Из-за этого изменяется угол опережения зажигания (УОЗ), ухудшается пуск двигателя, снижается его мощность и экономичность. Кроме того, другие значения УОЗ могут вызвать перебои в работе мотора при повышенных оборотах (высокой скорости). Чтобы избежать этого, необходимо проводить регулярное техническое обслуживание системы.
  2. У катушки первичная обмотка входит в цепь, содержащую контакты, ограничивающие величину протекающего через них тока, что сказывается на его значении во вторичной цепи и приводит к ограничению энергии искры.
  3. При высокой скорости движения возникает так называемый «дребезг» контактов, что означает их неоднократное размыкание-замыкание, что опять же отрицательно сказывается на работе зажигания.

Тем не менее, из-за своей дешевизны и простоты КСЗ использовалась долгое время, в частности, на машинах семейства ВАЗ 2107, 2106.

Дальнейшее развитие системы зажигания

Вышеописанные трудности удалось решить с широким распространением полупроводниковых элементов, таких как транзисторы и тиристоры. Итогом их применения стала так называемая бесконтактная система зажигания. Однако ее внедрение на отечественные автомобили произошло не сразу, сначала на ВАЗ 2107, 2106 было использовано так называемое контактно-транзисторное зажигание.

Контактно-транзисторное зажигание

контактное

Функциональную схему такой системы можно увидеть ниже.

Из рисунка становится понятно, что механический прерыватель управляет не накопителем энергии, в роли которого выступает катушка зажигания, а электронным коммутатором. Такое решение облегчило режимы работы прерывателя, повысило надежность и качество работы всей системы. Кроме того, это позволило модернизировать многочисленные автомашины ВАЗ 2107, 2106, находящиеся в эксплуатации, без значительных затрат со стороны их владельцев.

Бесконтактная система зажигания

бесконтактная система зажигания

Следующим этапом в развитии системы стало исключение механического прерывателя. Бесконтактная система зажигания такого типа показана на рисунке.

Впервые в отечественном автомобилестроении подобная система была внедрена на автомобилях ВАЗ девятого семейства, хотя потом с ней серийно выпускались и ВАЗ 2107, 2106.
Такая бесконтактная система подразумевает использование коммутатора для управления катушкой зажигания и предусматривает работу коммутатора с сигналами, получаемыми от бесконтактного датчика. Последние могут быть трех типов:

  • индуктивный;
  • датчик Холла (магнитный);
  • оптический.

датчик Холла

В отечественных машинах семейства ВАЗ 2107, 2106 используется датчик Холла.

Работа такого устройства мало чем отличается от работы обычной КСЗ. Вращение вала двигателя бесконтактный датчик преобразует в импульсы, поступающие на коммутатор напряжения. Последний обеспечивает импульсное прохождение тока через бобину. Благодаря этому во вторичной цепи возникает высоковольтное напряжение, поступающее через распределитель на свечи зажигания, между электродами возникает искра и от нее воспламеняется горючая смесь.
В процессе работы происходит регулирование УОЗ. Для этого используется центробежный (при изменении оборотов двигателя) и вакуумный (при изменении нагрузки) регуляторы.

Система зажигания, установленная на автомобиле, предназначена для своевременного воспламенения топливной смеси. Первоначально применялась контактная, но затем по мере развития электроники появилась бесконтактная система зажигания. Конечно, сейчас используются гораздо более сложные, микропроцессорные системы, но и БСЗ сыграла в свое время значительную роль в повышении качества и надежности автомобиля.

Бесконтактное зажигание — как оно работает? Система зажигания автомобиля Контактно-транзисторная система зажигания.

Чтобы обеспечить воспламенение горючей смеси в цилиндрах бензиновой силовой установки, используется внешний источник — электрическая искра, проскакивающая между электродами свечи накаливания. Но между этими электродами имеется определенный зазор, который электрическое напряжение должно пробить. Потому на свечу должно подаваться напряжение большого значения, составляющего десятки тысяч вольт.

Классическая катушка зажигания

Естественно, бортовая сеть авто не то что не рассчитана, она даже не способна выдать такое напряжение, поскольку не существует портативного источника питания с такими выходными параметрами.

Данная проблема была решена путем включения в систему зажигания специальной катушки, генерирующей высокое напряжение. По сути, катушка зажигания – это устройство преобразующее напряжение низкого значения (6-12 В) в большие значения (до 35 000 В).

Это и является основной функцией данного элемента – генерация импульса высокого вольтажа, подающегося накаливания.

Достигается генерация напряжения значительных показаний конструкцией . Устроена катушка зажигания просто, она состоит она из двух видов обмоток.

Конструкция катушки зажигания

Устройство катушки зажигания

Первичная обмотка, она же низковольтная, принимает напряжение, подающееся от аккумулятора или . Она состоит из витков проволоки крупного сечения, изготовленной из меди. Из-за этого количество витков данной обмотки незначительное – до 150 витков. Чтобы предупредить возможные скачки напряжения и возникновение короткого замыкания, данная проволока сверху покрыта изоляционным слоем. Концы этой обмотки выведены на крышку катушки, к ним и подсоединяется проводка с напряжением в 12 В.

Вторичная обмотка помещена внутри первичной. Она состоит из проволоки мелкого сечения, что обеспечивает большое количество витков – до 30000. Один из концов данной обмотки соединен с минусовым выводом первой обмотки. Второй вывод, являющийся положительным, подсоединен к центральному выводу катушки. От этого вывода высокое напряжение подается дальше.

Принцип работы катушки зажигания

Работает катушка зажигания по такому принципу: напряжение, подающееся от источника питания, проходит по виткам первичной обмотки, из-за чего образуется магнитное поле, которое воздействует на вторичную обмотку. Благодаря этому полю в ней формируется импульс напряжения высокого значения. На это значение сказывается большое количество витков данной обмотки, поскольку индукция магнитного поля первой обмотки умножается на количество витков вторичной обмотки. Отсюда и высокое выходное напряжение.

Чтобы увеличить магнитное поле внутри катушки, тем самым обеспечив более высокое выходное напряжение, внутрь катушки помещен железный сердечник.

Видео: Индивидуальная катушка зажигания ВАЗ

Ещё кое-что полезное для Вас:

Поскольку во время работы катушки возможен токовый нагрев обмоток, для охлаждения используется трансформаторное масло, которым заполняется полость корпуса. Крышка ее прилегает к корпусу герметично, поэтому катушка является неразборной. В случае неисправности ремонту она так же не подлежит.

Входное и выходное напряжение катушки не являются главными характеристиками, при помощи которой можно проверить исправность ее. Проверку работоспособности катушки производят по сопротивлению ее витком. При этом у каждой из катушек сопротивление может быть разным. К примеру, катушка может обладать сопротивлением первой обмотки на уровне 3,0 Ом, а вторичной – 7000-9000 Ом. Отклонение при замере от данных значений будет указывать на неисправность катушки. А поскольку она неремонтируемая, то она попросту заменяется.

Выше была описана конструкция катушки общего типа. Устанавливается она на все автомобили имеющие батарейную, бесконтактную и электронную систему зажигания, и оснащаются распределителем, который импульс от катушки направляет на нужный цилиндр.

Двухвыводная катушка

Существует еще два типа катушек – двухвыводные и индивидуальные. Двухвыводные катушки применяются в электронной системе зажигания с прямой подачей искры на свечу.

Двухвыводная катушка. Очень часто применяется на мотоциклах с электронной системой зажигания. Особенностью является наличие двух высоковольтных выводов. Они могут синхронно получать искру от двух цилиндров.

Внутренняя конструкция ее практически не отличается от катушки общего типа. Но выводов для подачи импульса у такой катушки – два. То есть, при работе катушки импульс подается сразу на две свечи. Поскольку при работе силовой установки одновременно конец такта сжатия в двух цилиндрах не может быть, а только в одном цилиндре, то во втором искровой разряд, который проскочит между электродами свечи не будет нести никакой полезной функции – холостая искра. Но при дальнейшей работе мотора ситуация поменяется – во втором цилиндре будет конец такта сжатия и искра необходима, а в первом цилиндре она будет холостой.

Двухвыводная катушка может иметь разные способы подключения к свечам накаливания. Один из способов – подача импульсов посредством двух высоковольтных проводов. Второй – использование одного наконечника и одного высоковольтного провода.

Такая катушка позволяет обойтись без распределителя, но подавать искру она может только на два цилиндра. А обычно у авто используется по 4 цилиндра. Для таких авто используется четырехвыводная катушка, которая сама по себе представляет две двухвыводные катушки, объединенные в один блок.

Индивидуальная катушка зажигания

В зависимости от устройства сердечника, индивидуальные катушки зажигания делятся на два типа – компактные, и стержневые
Компактная (слева) и стержневая (справа) индивидуальные катушки зажигания, устанавливаемые непосредственно над свечами зажигания.

Последний тип используемых на авто катушек – индивидуальные. Такие катушки работают только с одной , но при их использовании из передающей искру цепи исключен один из элементов – высоковольтный провод, поскольку катушка размещается .

Она имеет несколько иную конструкцию, но при этом принцип работы остался неизменным.

Устройство индивидуальной катушки зажигания

В ней имеется два сердечника. Поверх внутреннего располагаются две обмотки. Но в этой катушке вторичная обмотка располагается поверх первичной. Внешний сердечник располагается поверх обмоток.

Выходы вторичной обмотки подсоединены к наконечнику, который одевается на свечу. Этот наконечник состоит из стержня, рассчитанного на работу с высоким напряжением, пружины и изолятора.

Чтобы предохранить обмотки от значительных нагрузок, ко вторичной подсоединен диод, рассчитанный на работу со значительным напряжением.

Такая конструкция катушки очень компактна, что дает возможность использовать по одному элементу на каждый цилиндр. А отсутствие ряда других элементов, использующихся в системах, которые оснащаются первыми двумя типами катушек позволяет значительно снизить потери напряжения в цепи.

Это и все выпускающиеся на данный момент катушки зажигания, которыми оснащаются автомобили.

Системы зажигания сравнивают по следующим характеристикам:

Зависимости вторичного напряжения U 2 m от частоты разрядов f ;

Продолжительности искрового разряда (индуктивной составляющей);

Скорости нарастания высокого напряжения, определяющей чувствительность системы зажигания к шунтированию искрового промежутка свечи;

Надежности системы зажигания;

Потребности в обслуживании;

Наличию в выхлопных газах токсичных веществ.

Наибольшее значение из приведенных выше характеристик имеет зависимость вторичного напряжения U 2 m от частоты f .

Частота разрядов пропорциональна частоте вращения n и числу цилиндров двигателях

где τ равно 2 — для 4-тактных двигателей и 1 — для 2-тактных.

На рис. 4.8 представлена зависимость вторичного напряжения, развиваемого различными системами зажигания, от частоты разрядов (искрообразования). Наибольшее снижение вторичного напряжения (рис.4.8, кривая 1) при увеличении частоты искрообразования происходит в контактной батарейной (классической) системе зажигания из–за уменьшения тока разрыва в первичной обмотке катушки зажигания. Максимальная частота разрядов контактной батарейной системы зажигания 300 искр в секунду. В этой системе зажигания при пуске двигателя также понижается вторичное напряжение.

Рис. 4.8. Зависимость вторичного напряжения различных систем зажигания от частоты разрядов: 1 — контактная батарейная (классическая); 2 — контактно–транзисторная; 3 — тиристорная (конденсаторная).

Контактно–транзисторные системы зажигания вследствие четкого разрыва увеличенного тока (до 10 А) первичной цепи развивают более высокое вторичное напряжение и повышенную бесперебойную частоту разрядов – 350 искр в секунду.

Рекомендуется к прочтению  Чем выставить зажигание на авто. Зажигание: что такое зажигание и как настроить УОЗ

У тиристорных систем зажигания вторичное напряжение не зависит от частоты разрядов, так как накопительный конденсатор успевает зарядиться до максимального (расчетного) напряжения (частота разрядов порядка 600 искр в секунду).

Шунтирование искрового промежутка свечи, вследствие загрязнений и нагара на изоляторе приводит к снижению вторичного напряжения. Наиболее устойчивой к шунтированию искрового промежутка является тиристорная система зажигания (рис. 4.9, кривая 1) благодаря быстрому нарастанию вторичного напряжения. Больше всех теряет напряжения при шунтировании искрового промежутка контактная батарейная (классическая) система зажигания (рис. 4.9, кривая 3).

Рис. 4.9. Процентное изменение вторичного напряжения в зависимости от шунтирующего сопротивления искрового промежутка свечи в различных системах зажигания: 1 – тиристорная; 2 – контактно–транзисторная; 3 – контактная батарейная (классическая)

Мощность, потребляемая различными системами зажигания, неодинакова, причем с изменением частоты вращения коленчатого вала двигателя она не остается постоянной.

Наибольшую мощность потребляет контактно — транзисторная система зажигания (около 60 Вт) на пусковой частоте вращения, а при максимальной частоте вращения она снижается до 40 Вт. Контактная батарейная система зажигания имеет пониженную потребляемую мощность (18 — 20 Вт при пусковой и 7 — 9 Вт при максимальной частоте вращения).

Уменьшение потребляемой мощности названными системами зажигания происходит вследствие снижения тока разрыва с увеличением частоты вращения коленчатого вала двигателя.

Наиболее трудоемка в обслуживании контактная батарейная (классическая) система зажигания. Неисправности в ней возникают примерно через 10 000 км пробега.

Продолжительность искрового разряда между электродами свечи зажигания характеризует его энергию и оказывает существенное влияние на полноту сгорания рабочей смеси, а, следовательно, и на состав выхлопных газов. Допустимое время разряда считается от 0,2 до 0,6 мс. При времени разряда меньше 0,2 мс ухудшается пуск двигателя, а при длительности разряда более 0,6 мс возрастает электрическая эрозия электродов свечи зажигания. Чем больше искровой промежуток между электродами свечи зажигания, тем меньше длительность разряда.

Напряжение, подводимое к первичной обмотке катушки зажигания конденсаторных систем зажигания, должно находиться в пределах 290 — 400 В, так как вторичное высокое напряжение связано с напряжением в первичной обмотке через коэффициент трансформации катушки зажигания и при отклонении первичного напряжения ниже 290 В зажигание будет не надежным, а при отклонении выше 400 В может быть пробита изоляция обмотки катушки зажигания или крышки распределителя.

Стремление к усовершенствованию своего транспортного средства, наверное, никогда не покидало их владельцев, поэтому нет ничего странного в том, что вместе с модернизацией других агрегатов и систем автомобиля очередь дошла и до его зажигания. Отечественные машины и многие старые иномарки обладают контактным видом системы зажигания, однако, в последнее время, все чаще можно услышать о другом его виде – бесконтактном зажигании.

Конечно, на этот счет, мнения у Всех разные, однако, большинство автолюбителей склоняются именно к этому варианту. В данной статье, мы попробуем выяснить чем же бесконтактная система обязана такой популярности, из чего она состоит и как функционирует, а также, рассмотрим основные виды возможных неисправностей, их причины и первые признаки.

Преимущества бесконтактного зажигания

Большинство выпускающихся сегодня автомобилей с бензиновыми двигателями, (неважно отечественного они или зарубежного производства) оборудуются , у которых конструкция прерывателя распределителя не предусматривает наличие контактов. Соответственно, это системы так и называются – бесконтактные.

Преимущества бесконтактного зажигания проверены на практике уже не одним автовладельцем, о чем могут свидетельствовать обсуждения этой темы на различных интернет-форумах. К примеру, нельзя не отметить простоту ее установки и настройки, рабочую надежность или улучшение пусковых качеств двигателя, в холодную погоду. Согласитесь, получается уже неплохой список «плюсов». Возможно, автовладельцам более консервативных взглядов этого покажется недостаточно, но если Вас основательно достали частые неисправности «контактной пары» и Вы начали задумываться о ее замене на более современную конструкцию бесконтактного зажигания, то вполне возможно, что данная статья поможет сделать этот последний и самый ответственный шаг.

По мнению некоторых посетителей, тех же интернет форумов, самой большой проблемой замены контактного зажигания на бесконтактное, есть сам процесс покупки комплекта. Учитывая, что стоит он немало, а в зависимости от марки и модели цена может существенно отличаться, заставить себя потратить эти деньги сможет далеко не каждый автовладелец. Тут уже, как говориться: «кто на что рассчитывает»…Но думаю, Вам, уважаемые читатели, будет интересно, какие плюсы в этой системе нашли специалисты. С их точки зрения, бесконтактная система зажигания (в сравнении с контактной) обладает тремя основными преимуществами:

Во-первых , подача тока на первичную обмотку осуществляется через полупроводниковый коммутатор, а это позволяет получить куда большую энергию искры, путем возможного получения большего напряжения на вторичной обмотке той же катушки (до 10 кВ);

Во-вторых , электромагнитный импульсный создатель (чаще всего, реализованный на основе эффекта Холла), который с функциональной точки зрения заменяет контактную группу (КГ) и по сравнению с ней, обеспечивает намного лучшие импульсные характеристики и их стабильность во всем диапазоне оборотов мотора. Как результат, мотор, оборудованный бесконтактной системой, обладает более высоким уровнем мощности и значительной экономичностью в плане топлива (до 1 литра на 100 километров).

В-третьих , потребность в обслуживании бесконтактного зажигания возникает намного реже, нежели аналогичное требование контактной системы. В данном случае, все необходимые действия сводятся лишь к смазыванию вала трамблера, спустя каждых 10000 километров пробега.

Однако, не все так радужно и в этой системе встречаются свои минусы. Основной недостаток кроется в более низкой надежности, особенно, это касается коммутаторов первоначальных комплектаций описанной системы. Довольно часто, они выходили из строя уже через нескольких тысяч километров пробега автомобиля. Чуть позже, был разработан более усовершенствованный – модифицированный коммутатор. Хоть его надежность и считается несколько высшей, однако в глобальном плане, ее также можно назвать низкой. Поэтому, в любом случае, в бесконтактной системе зажигания стоит избегать применения отечественных коммутаторов, лучше отдавать предпочтение импортным, ведь при поломке, диагностические процедуры, да и сам ремонт системы не будут отличаться особой простотой.

При желании, автовладелец может модернизировать установленное бесконтактное зажигание, что выражается в замене элементов системы на более качественные и надежные. Так, при необходимости, замене подлежит крышка трамблера, бегунок, датчик Холла, катушка или коммутатор. Кроме того, усовершенствовать систему можно и с помощью использования блока зажигания для бесконтактных систем (например, «Октан» или «Пульсар»).

В общем, в сравнении с контактной системой зажигания, бесконтактны вариант работает намного четче и равномернее , а все благодаря тому, что в большинстве случаев, возбудителем импульса выступает датчик Холла, который срабатывает как только мимо него проходят воздушные зазоры (щели, имеющиеся в полом вращающемся цилиндре на оси трамблера машины). Кроме того, для работы электронного зажигания (к нему часто относят и бесконтактный его вид) требуется намного меньше энергии аккумулятора, тоесть с толчка машину можно будет завести и при сильно разряженной аккумуляторной батареи. При включенном зажигании, электронный блок практически не использует энергию, а начинает ее потреблять только при вращении вала мотора.

Положительным моментом применения бесконтактного зажигания есть и то, что его ненужно чистить или регулировать, в отличии от того же механического, который не только требует большего ухода, но еще и тянет постоянный ток при замкнутых контактах прерывателя, тем самым способствуя нагреванию катушки зажигания при выключенном двигателе.

Структура и функции бесконтактного зажигания

Бесконтактную систему зажигания, еще называют логическим продолжением контактно-транзисторной системы, только в данном варианте, место контактного прерывателя занял бесконтактный датчик. В стандартном виде, бесконтактная система зажигания устанавливается на ряд автомобилей отечественного автопрома, а также, может монтироваться в индивидуальном, самостоятельном порядке – как замена контактной системы зажигания.

С конструктивной точки зрения, такое зажигание объединило в себе целый ряд элементов, основные из которых представлены в виде источника питания, выключателя зажигания, датчика импульсов, транзисторного коммутатора, катушки зажигания, распределителя и свечей зажигания, а используя высоковольтные провода, распределить соединяется со свечами и катушкой зажигания.

В целом, устройство бесконтактной системы зажигания соответствует аналогичной контактной, а разницу становит только отсутствие в последней датчика импульсов и транзисторного коммутатора. Датчик импульсов (или импульсный датчик) – это устройство, предназначенное для создания электроимпульсов низкого напряжения. Выделяют такие типы датчиков: Холла, индуктивный и оптический. В конструктивном плане, импульсный датчик объединен с распределителем и составляет с ним единое устройство – датчик-распределитель. Внешне он схожий с прерывателем-распределителем и оснащен таким же приводом (от коленвала двигателя).

Транзисторный коммутатор создан для прерывания тока в цепи первичной обмотки катушки, соответственно сигналам датчика импульсов. Процесс прерывания осуществляется благодаря открыванию и закрыванию выходного транзистора.

Формирование сигнала датчиком Холла

В большинстве случаев, для бесконтактной системы зажигания, характерным есть применение магнитоэлектрического датчика импульсов, работа которого базируется на эффекте Холла. Свое название прибор получил в честь американского физика Эдвина Герберта Холла, который в 1879 году открыл важное гальваномагнитное явление, имеющее огромное значение для последующего развития науки. Суть открытия заключалась в следующем: если на полупроводник, с протекающим вдоль током, оказать воздействие с помощью магнитного поля, то в нем появится поперечная разница в потенциалах (ЭДС Холла). Другими словами, воздействуя магнитным полем на пластину проводника с током, мы получим поперечное напряжение. Появляющаяся поперечная ЭДС может обладать напряжением лишь на 3В меньшим, чем напряжение питания.

Устройство предусматривает наличие постоянного магнита, полупроводниковой пластины с имеющейся в ней микросхемой и стального экрана с прорезями (другое название – «обтюратор»).

Данный механизм имеет щелевую конструкцию: с одной стороны щели размещается полупроводник (при включенном зажигании по нему протекает ток), а с другой – находится постоянный магнит. В щель датчика, установлен стальной экран цилиндрической формы, конструкция которого отличается наличикм прорезей. Когда прорезь стального экрана пропускает магнитное поле, в полупроводниковой пластине появляется напряжение, если же сквозь экран не проходит магнитное поле, соответственно, напряжение не возникает. Периодическое чередование прорезей стального экрана создает импульсы, имеющие низкое напряжение.

В процессе вращения экрана, когда его прорези попадают в щель датчика, магнитный поток начинает воздействовать на полупроводник с протекающим током, после чего управляющие импульсы датчика Холла передаются коммутатору. Там они преобразовываются в импульсы тока первичной обмотки катушки зажигания.

Неисправности в бесконтактной системе зажигания

Кроме описанной выше системы зажигания, на современных автомобилях также еще устанавливается и контактная, и электронная системы. Разумеется, что в процессе эксплуатации каждой из них, возникают различные неисправности. Конечно, некоторые из поломок индивидуальны для каждой системы, однако, существуют и общие поломки, характерные для каждого из видов. К ним относятся:

— проблемы со свечами зажигания, неисправности катушки;

Нарушение соединений низковольтной и высоковольтной цепи (включая обрыв провода, окисление контактов или неплотное соединение).

Если говорить об электронной системе, то к этому перечню добавятся еще и неисправности ЭБУ (электронного блока управления) и поломки входных датчиков.

Кроме общих неисправностей, к проблемам бесконтактной системы зажигания часто относятся и неполадки в устройстве транзисторного коммутатора, центробежного и вакуумного регулятора опережения зажигания или датчика-распределителя. К основным причинам появления тех или иных неисправностей в любом из указанных видов зажигания, относятся:

— нежелание автовладельцев соблюдать правила эксплуатации (использование низкокачественного топлива, нарушение регулярности технического обслуживания или неквалифицированное его проведение);

Применение в эксплуатации некачественных элементов системы зажигания (свечей, катушек зажигания, высоковольтных проводов и т.п.);

Отрицательное воздействие внешних факторов окружающей среды (атмосферных явлений, механических повреждений).

Конечно, любая неисправность в автомобиле, будет отражаться на его работе. Вот и в случае с бесконтактной системой зажигания, любая поломка сопровождается определенными внешними проявлениями: запуск двигателя вообще не начинается или мотор начинает работать с трудом. Если Вы заметили в своей машине этот признак, то вполне возможно, что причину следует искать в обрыве (пробое) высоковольтных проводов, поломке катушки зажигания ну или в неисправности свечей зажигания.

Работа двигателя в режиме холостого хода характеризуется неустойчивостью. К возможным неисправностям, характерным для этого показателя можно отнести пробой в крышке датчика-распределителя; проблемы в работе транзисторного коммутатора и неполадке в работе датчика-распределителя.

Увеличение расхода бензина и снижение мощности силового агрегата, могут свидетельствовать о выходе из строя свечей зажигания; поломке центробежного регулятора опережения зажигания или сбоев в работе вакуумного регулятора опережения зажигания.

Рабочая смесь в цилиндре двигателя загорается от проскакивающей в нужный момент электрической искры. Для обеспечения своевременного воспламенения рабочей смеси предназначена система зажигания, которая бывает трех типов:

контактная;
бесконтактная (транзисторная);
электронная.
Можно сказать, что время контактной и бесконтактной систем практически ушло. В современных машинах, как правило, используется электронная система зажигания. Однако, учитывая тот факт, что многие наши соотечественники ездят на советских и старых российских автомобилях, вкратце рассмотрим принципы работы контактной и транзисторной систем зажигания. Последняя, в частности, используется на ВАЗ-2108. Что касается электронной системы зажигания, то на практике изучать ее нет необходимости, поскольку отрегулировать электронное зажигание можно только на специализированной станции технического обслуживания.

Электрическая искра в контактной системе зажигания образуется между электродами свечи зажигания в конце такта сжатия. Поскольку промежуток сжатой рабочей смеси между электродами свечи имеет высокое электрическое сопротивление, между ними должно создаваться большое напряжение — до 24 000 В: только в этом случае будет вызван искровой разряд. Кстати, искровые разряды должны появляться при определенном положении поршней в цилиндрах и чередоваться в соответствии с установленным порядком работы цилиндров. Иначе говоря, искра не должна проскакивать во время такта впуска, сжатия или выпуска.

Рекомендуется к прочтению  Электросхема электронного зажигания своими руками. Простая схема электронного зажигания. Что дает установка БСЗ на семерку

Контактная система батарейного зажигания состоит из следующих элементов:

источников электрического тока (аккумулятора и генератора);
катушки зажигания;
замка зажигания (в него водитель вставляет ключ, чтобы завести автомобиль);
прерывателя тока низкого напряжения;
распределителя тока высокого напряжения;
конденсатора;
свечей зажигания (из расчета на один цилиндр — одна свеча);
электрических проводов низкого и высокого напряжения.
Источники электрического тока обеспечивают его подачу в систему зажигания. При запуске двигателя источником является аккумулятор. Работающий двигатель постоянно получает подзарядку от генератора.

Основное предназначение катушки зажигания (она располагается в моторном отсеке) — преобразование тока низкого напряжения в ток высокого напряжения. Когда по первичной обмотке низкого напряжения проходит электрический ток, вокруг нее создается мощное магнитное поле. После прекращения подачи тока (эту задачу выполняет прерыватель) магнитное поле исчезает и пересекает большое количество витков вторичной обмотки высокого напряжения, в результате чего в ней возникает ток высокого напряжения. Значительный рост напряжения (от 12 до требуемых 24 000 В) достигается за счет разницы числа витков в обмотках катушки.

Полученное напряжение позволяет преодолеть пространство между электродами свечи зажигания и получить электрический разряд, в результате которого образуется требуемая искра.

Примечание: В среднем зазор между электродами свечи зажигания составляет 0,5-1 мм. При необходимости его можно отрегулировать, выкрутив свечу.

При неотрегулированном зазоре между электродами свечи зажигания двигатель работает нестабильно: могут функционировать не все цилиндры. Например, из 4 цилиндров работают 3, еще 1 крутится «вхолостую» (в таких случаях говорят, что мотор троит). При этом двигатель заметно теряет мощность, а расход топлива увеличивается.

Регулируя зазор между электродами свечи, подгибают только боковой электрод. Центральный электрод подгибать запрещено, поскольку это может стать причиной появления трещин на керамическом изоляторе свечи и она станет непригодной.

Функции замка зажигания известны даже новичкам: он необходим, чтобы замкнуть электрическую цепь и завести автомобиль.

Задача прерывателя низкого напряжения — вовремя прервать подачу тока низкого напряжения на первичную обмотку катушки зажигания, чтобы в этот момент во вторичной обмотке образовался ток высокого напряжения. Образовавшийся ток поступает на центральный контакт распределителя тока высокого напряжения.

Контакты прерывателя расположены под крышкой распределителя зажигания. Подвижный контакт постоянно прижимается к неподвижному с помощью специальной пластинчатой пружины. Эти контакты размыкаются на очень маленький промежуток времени в тот момент, когда набегающий кулачок приводного валика трамблера надавливает на молоточек подвижного контакта.

Чтобы контакты не выходили из строя преждевременно, используется конденсатор, который предохраняет контакты от обгорания. Дело в том, что в момент размыкания подвижного и неподвижного контактов между ними могла бы проскакивать мощная искра, однако конденсатор поглощает практически весь электрический разряд.

Еще одна задача конденсатора состоит в том, чтобы способствовать увеличению напряжения во вторичной обмотке катушки зажигания. При размыкании подвижного и неподвижного контактов прерывателя конденсатор разряжается и создает обратный ток в катушке низкого напряжения, что ускоряет исчезновение магнитного поля. В соответствии с законами физики, чем быстрее пропадает магнитное поле в первичной обмотке, тем более мощный ток возникает во вторичной обмотке.

Эта функция конденсатора исключительно важна. Ведь если он неисправен, двигатель автомобиля может вообще не работать, так как напряжения, возникающего во вторичной обмотке, будет недостаточно для пробоя зазора между электродами свечи зажигания и, следовательно, для получения искры.

Прерыватель тока низкого напряжения и распределитель тока высокого напряжения объединены в одном корпусе и представляют собой прибор, который называется трамблер. Его основные элементы:

крышка с контактами;
тяга;
корпус вакуумного регулятора;
диафрагма вакуумного регулятора;
ротор распределителя (бегунок);
опорная пластина;
резистор;
контактный уголек;
центробежный регулятор с пластиной;
кулачок прерывателя;
подвижная пластина прерывателя;
грузик;
контактная группа;
приводной валик.
С помощью ротора и крышки ток высокого напряжения, образовавшийся в катушке зажигания, распределяется по цилиндрам двигателя (точнее, по свечам, имеющимся в каждом цилиндре). Далее ток по высоковольтному проводу поступает на центральный контакт крышки распределителя, а после этого через подпружиненный контактный уголек на пластину ротора (бегунка). Ротор вращается, и ток через небольшое воздушное пространство переходит на боковые контакты крышки трамблера. К этим контактам подведены высоковольтные провода, которые и проводят ток к свечам зажигания. Причем провода с контактами соединены в строго определенной последовательности, с помощью которой устанавливается порядок работы цилиндров двигателя внутреннего сгорания.

В большинстве случаев последовательность работы 4-цилиндровых двигателей такая: вначале рабочая смесь воспламеняется в первом цилиндре, затем в третьем, далее в четвертом и, наконец, во втором. При таком порядке нагрузка на коленчатый вал распределяется равномерно.

Ток высокого напряжения должен поступать на свечу не в тот момент, когда поршень достиг верхней мертвой точки, а немного ранее. Поршни в цилиндрах движутся с очень высокой скоростью, и если искра появится в момент нахождения поршня в верхнем состоянии, сгоревшая рабочая смесь не успеет оказать на него необходимое давление, что приведет к заметной потере мощности двигателя. Если смесь воспламенится чуть раньше, то поршень испытает наибольшее давление, следовательно — двигатель покажет максимум мощности.

Когда именно должна появиться искра? Этот параметр называется углом опережения зажигания: поршень не доходит примерно 40-60° до верхней мертвой точки, если производить замер по углу поворота коленчатого вала.

Для регулировки первоначального угла опережения зажигания корпус трамблера поворачивают до тех пор, пока не будет найден оптимальный вариант. При этом выбирают момент размыкания подвижного и неподвижного контактов прерывателя, когда они либо приближаются, либо удаляются от набегающего кулачка приводного валика трамблера. Кстати, трамблер имеет привод от коленчатого вала двигателя.

В разных режимах работы двигателя условия сгорания рабочей смеси меняются, поэтому угол опережения зажигания нуждается в постоянной корректировке. Эту задачу помогают решить два прибора: центробежный и вакуумный регуляторы опережения зажигания.

Центробежный регулятор опережения зажигания состоит из двух грузиков на осях, укрепленных на пластине приводного валика. Грузики стянуты между собой двумя пружинами. Кроме того, на них имеются штифты, которые вставлены в прорези пластины кулачка прерывателя. Главное предназначение центробежного регулятора опережения зажигания — изменение момента появления искры между электродами свечи зажигания в зависимости от того, с какой скоростью вращается коленчатый вал двигателя.

По мере повышения частоты вращения коленчатого вала грузики под действием центробежной силы расходятся в стороны и поворачивают пластину с кулачком прерывателя по направлению его вращения на определенный угол, что обеспечивает более раннее размыкание контактов прерывателя. Следовательно, опережение зажигания увеличивается.

Когда скорость вращения коленчатого вала снижается, центробежная сила также уменьшается. Под действием стяжных пружин грузики сходятся, поворачивая пластину с кулачком прерывателя в обратную сторону. Результатом является уменьшение опережения зажигания.

Для автоматического изменения опережения зажигания в зависимости от текущей нагрузки на двигатель предназначен вакуумный регулятор. Как известно, в зависимости от состояния дроссельной заслонки в цилиндры двигателя попадает смесь разного состава, соответственно, на ее сгорание требуется различное время.

Вакуумный регулятор монтируется в трамблере, причем корпус регулятора разделен диафрагмой на две полости, одна из которых сообщается с атмосферой, другая — через трубку с карбюратором (точнее, с поддроссельным пространством). При закрытии дроссельной заслонки разряжение в вакуумном регуляторе увеличивается, диафрагма, преодолевая сопротивление возвратной пружины, выгибается наружу и через специальную тягу поворачивает подвижный диск навстречу вращению кулачка прерывателя в сторону увеличения опережения зажигания. Когда дроссельная заслонка открывается, разряжение в полости уменьшается, диафрагма под воздействием пружины выгибается в обратную сторону, поворачивая диск прерывателя по ходу вращения кулачка в сторону уменьшения опережения зажигания.

На старых советских и российских машинах можно выполнить ручную регулировку зажигания с помощью октан-корректора.

Ключевым элементом системы зажигания автомобиля является свеча зажигания. На какой бы машине вы не ездили — «Мерседесе», «Жигули», «Лексусе» или «Запорожце»,- без свечей вам не обойтись. Напомним, что количество свечей соответствует числу цилиндров двигателя.

Когда ток высокого напряжения попадает от распределителя на свечу, между ее электродами проскакивает электрический разряд, воспламеняющий рабочую смесь в цилиндре. Рабочая смесь при сгорании давит на поршень, тот под силой давления движется вниз и прокручивает коленчатый вал, с которого крутящий момент передается на ведущие колеса автомобиля.

Что касается бесконтактной (транзисторной) системы зажигания, то ее основное преимущество заключается в возможности увеличения мощности напряжения, подаваемого на электроды свечи. Это заметно упрощает запуск непрогретого двигателя, а также его работу в холодное время года. Кроме того, автомобиль с бесконтактной системой зажигания является более экономичным.

Основными элементами бесконтактной системы зажигания являются:

источники электрического тока (аккумулятор и генератор);
катушка зажигания;
свечи зажигания;
датчик-распределитель;
коммутатор;
выключатель зажигания;
высоковольтные и низковольтные провода.
Характерной особенностью транзисторной системы является то, что в ней отсутствуют контакты прерывателя, вместо которых используется специальный датчик. Он посылает импульсы в коммутатор, который управляет катушкой зажигания. Катушка зажигания, как обычно, преобразует ток низкого напряжения в ток высокого напряжения.

Среди наиболее часто встречающихся неисправностей системы зажигания автомобиля первую очередь нужно отметить позднее либо раннее зажигание, перебои в одном или нескольких цилиндрах, а также полное отсутствие зажигания.

Если вы заметили, что двигатель теряет мощность и одновременно перегревается — возможно, виновато позднее зажигание. Когда потеря мощности сопровождается характерным стуком в двигателе — скорее всего, речь идет о раннем зажигании. В любом случае для решения проблемы необходимо отрегулировать момент зажигания (как говорят автомобилисты, выставить зажигание). В современных автомобилях самостоятельно это сделать практически невозможно, поэтому сразу обращайтесь на станцию технического обслуживания.

Если какой-то цилиндр работает с перебоями (мотор троит) — в первую очередь проверьте состояние свечи зажигания: возможно, на ее электродах образовался нагар, который нужно снять либо отрегулировать зазор между электродами. Кроме того, причиной неисправности свечи является наличие трещин и иных механических повреждений на керамическом изоляторе.

Примечание: Свеча — одна из тех деталей, которые редко нуждаются в замене. В среднем свеча зажигания может «пройти» несколько десятков тысяч километров, поэтому причиной подобных проблем совершенно необязательно являются неисправности свечей.

Заменить свечи зажигания может даже малоопытный автомобилист. Для этого необходимо отсоединить от них высоковольтные провода, затем специальным свечным ключом выкрутить старые свечи и вкрутить новые. Операция несложная, выполняется буквально за 10-20 мин.

Иногда трудно на глаз определить, какая именно свеча неисправна (то есть какой цилиндр работает с перебоями). Чтобы найти повреждение, поочередно отсоединяйте высоковольтные провода от соответствующих свечей путем снятия их наконечников: если перебои в работе двигателя стали более заметны — данная свеча исправна, а если работа двигателя не изменилась — значит, именно она вышла из строя. Дополнительным подтверждением неисправности свечи может являться то, что она после выкручивания из горячего двигателя будет холоднее остальных.

Случаются повреждения высоковольтного провода, вследствие чего электричество поступает с перебоями либо не подается вообще. Рекомендуется проверить состояние контакта, которым провод соединяется со свечой: бывает, что для устранения неисправности достаточно плотнее его прижать. В старых машинах с контактной системой зажигания проблема может заключаться в соответствующем гнезде крышки прерывателя-распределителя.

Если наблюдаются перебои в работе разных цилиндров — проверьте состояние центрального высоковольтного провода: есть вероятность повреждения изоляции. Возможно, это обусловлено вышедшим из строя конденсатором, плохим контактом высоковольтного провода с клеммой катушки зажигания либо гнездом крышки прерывателя-распределителя (в машинах с контактной системой зажигания). В старых автомобилях причинами могут являться обгорание контактов прерывателя, периодическое замыкание на «массу» подвижного контакта прерывателя из-за поврежденной изоляции, появление трещин на крышке трамблера, неотрегулированный зазор между контактами прерывателя.

Проблемы с искрой решаются путем обработки водовытесняющим аэрозолем распределителя зажигания и высоковольтных проводов. Такие аэрозоли в ассортименте продаются на автомобильных рынках и в специализированных магазинах. В частности, у отечественных автолюбителей пользуется популярностью аэрозоль ВД-40.

Довольно неприятным симптомом является полное отсутствие зажигания. Как правило, причина кроется в неисправностях высоковольтных или низковольтных цепей. Для их устранения придется обратиться на станцию технического обслуживания.

Внимание: В случае самостоятельного выполнения работ по техническому обслуживанию и ремонту системы зажигания при работающем двигателе не касайтесь руками элементов системы зажигания, а также не проверяйте их работоспособность «на искру». При включенном зажигании нельзя отключать от коммутатора штекерный разъем, поскольку это может привести к выходу из строя конденсатора. Запрещается прокладывать в одном жгуте высоковольтные и низковольтные провода.

© А. Пахомов (aka IS_18 , Ижевск)

Основная задача системы зажигания современного бензинового двигателя – формирование импульсов высокого напряжения, необходимых для воспламенения топливно-воздушной смеси. Первоначальное воспламенение смеси происходит от энергии, выделяющейся в шнуре пробоя. В объеме шнура электрическая искра вызывает практически мгновенный термический нагрев молекул смеси, их ионизацию и химическую реакцию между ними. Если выделившейся при этом энергии достаточно для начала реакции горения смеси в оставшемся объеме камеры сгорания, то воспламенение смеси произойдет, и цилиндр отработает нормально. В противном случае возможен пропуск воспламенения. Поэтому система зажигания играет одну из ключевых ролей в обеспечении надежного воспламенения топливно-воздушной смеси.

Проверка элементов системы зажигания – обязательная операция при проведении диагностических работ. Она включает в себя достаточно обширный перечень действий с применением разнообразных методик. К числу последних относится анализ осциллограммы высоковольтного пробоя и горения искры, полученный с помощью мотортестера.

Рекомендуется к прочтению  Как поставить зажигание

Вкратце напомним характерные моменты этой осциллограммы:

Время накопления – это время, в течение которого происходит накопление энергии в магнитном поле катушки. Оно определяется блоком управления в соответствии с заложенной в него программой либо коммутатором зажигания. Когда-то давно время накопления зависело от угла замкнутого состояния контактов, но подобные системы уже безнадежно устарели, и рассматриваться нами не будут. Время горения – это время существования тока между электродами свечи. Зависит от очень многих факторов и составляет 1 …2 мс.

В момент размыкания первичной цепи системы зажигания во вторичной катушке генерируется высоковольтный импульс. Значение напряжения, при котором происходит пробой искрового промежутка, называется напряжением пробоя. При анализе осциллограммы это значение необходимо измерить и оценить. Поговорим о том, каким образом это можно сделать, от чего оно будет зависеть.

Самый важный тезис, который обязательно необходимо озвучить, прежде чем продолжить разговор, заключается в следующем: система зажигания современного двигателя является частью системы управления двигателем, исполнительным механизмом этой системы.

В чём коренное отличие современной системы от системы с центробежным и вакуумным регуляторами, известной по автомобилям ВАЗ классической компоновки? Отличие заключается в самом главном. Если ранее в перечень задач системы зажигания входило формирование времени накопления энергии в катушке и регулировка угла опережения зажигания в зависимости от оборотов коленчатого вала и нагрузки на двигатель, то функция современной системы зажигания заключается только в генерации высоковольтных импульсов и распределении их по цилиндрам двигателя. Задача расчёта оптимального УОЗ и времени накопления возложена на электронный блок управления двигателем. Для грамотного анализа осциллограмм необходимо четко представлять, как функционирует система управления двигателем в части управления системой зажигания.

Для правильного понимания методик диагностики нужно знать принцип работы того или иного элемента, видеть причинно-следственные связи, и прежде всего совершенно необходимо иметь представление о том, как происходит пробой искрового промежутка.

Рассмотрим в упрощенном виде механизм формирования шнура пробоя. В общем случае газы и их смеси являются идеальными изоляторами. Но в результате действия ионизирующего космического излучения в воздухе всегда присутствуют свободные электроны и соответственно, положительно заряженные ионы – остатки молекул. Поэтому, если газ разместить между двумя электродами и подать на них напряжение, между электродами возникнет электрический ток. Однако величина этого тока очень незначительна вследствие малого количества электронов и ионов.

Рассматриваемый вариант является идеальным. Между плоскими электродами, находящимися на малом расстоянии друг от друга, формируется однородное электрическое поле. Однородным называют поле, напряжённость которого в любой точке остаётся неизменной. Внутри искрового промежутка электроны движутся к положительно заряженному электроду, получая ускорение вследствие действия на них электрического поля. При определенном значении напряжения на электродах приобретенной электроном кинетической энергии становится достаточно для ударной ионизации молекул.

Сказанное поясняют рисунки:

Рис.3 Рис.4
Свободный электрон 1 (рис.3 ) при соударении с нейтральной молекулой расщепляет ее на электрон 2 и положительный ион. Электроны 1 и 2 при дальнейшем соударении с нейтральными молекулами снова расщепляют их на электроны 3 и 4 и положительные ионы, и т. д. Аналогичное явление происходит и при движении положительно заряженных ионов (рис.4 ). Возникает лавинообразное размножение положительных ионов и электронов при соударении положительных ионов с нейтральными молекулами.

Таким образом, процесс идет по нарастающей, и ионизация в газе быстро достигает очень большой величины. Это явление вполне аналогично снежной лавине в горах, для зарождения которой бывает достаточно ничтожного комка снега. Поэтому и описанный процесс был назван ионной лавиной. В результате между электродами возникает значительный электрический ток, который создает сильно нагретый и ионизированный канал. Температура в канале достигает 10 000 К. Напряжение, при котором возникает ионная лавина, и есть ранее рассмотренное напряжением пробоя. Оно обозначается Uпр. После пробоя сопротивление канала стремится к нулю, сила тока достигает десятков ампер, а напряжение падает. Первоначально процесс протекает в очень узкой зоне, но вследствие быстрого роста температуры канал пробоя расширяется со сверхзвуковой скоростью. При этом образуется ударная волна, воспринимаемая на слух как характерный треск.

С практической точки зрения наиболее важным является значение напряжения пробоя, которое можно измерить и оценить после получения осциллограммы. Проанализируем факторы, от которых оно зависит.

1 . Совершенно очевидно, что на значение напряжения пробоя будет оказывать влияние расстояние между электродами. Чем больше расстояние, тем ниже напряжённость электрического поля в пространстве между электродами, тем меньшую кинетическую энергию будут приобретать заряженные частицы при движении. И соответственно, при прочих равных условиях потребуется большее значение прикладываемого напряжения для пробоя искрового промежутка.

2 . Чем ниже концентрация молекул газа в искровом промежутке, тем меньшее число молекул находится в единице объема, и тем больший путь свободно пролетают заряженные частицы между двумя последовательными соударениями. Соответственно, тем большее количество кинетической энергии они запасают в процессе движения, и тем выше вероятность последующей ударной ионизации. Поэтому напряжение пробоя увеличивается с ростом концентрации молекул газа. На практике это означает, что напряжение пробоя увеличивается с ростом давления в камере сгорания.

3 . Для решения задач диагностики важно знать зависимость напряжения пробоя от наличия в воздухе молекул углеводородов, то есть топлива. В общем случае молекулы топлива являются диэлектриком. Но они представляют собой длинные углеводородные цепочки, разрушение которых в электрическом поле наступает раньше, чем относительно устойчивых двухатомных молекул атмосферных газов. Вследствие этого увеличение количества молекул топлива (обогащение смеси) приводит к понижению напряжения пробоя.

4 . На величину напряжения пробоя будет оказывать значительное влияние форма электродов свечи. В рассмотренном выше идеальном случае предполагалось, что электроды плоские, и возникающее между ними электрическое поле однородное. В реальности форма электродов свечи зажигания отлична от плоскости, что вызывает неоднородную структуру электрического поля. Можно утверждать, что значение напряжения пробоя будет в значительной мере зависеть от формы электродов и создаваемого ими электрического поля.

5 . Значение напряжения пробоя реальной свечи зажигания будет зависеть от полярности приложенного напряжения. Причина этого явления заключается в следующем. При нагревании металла до достаточно высокой температуры свободные электроны начинают покидать пределы кристаллической решетки металла. Это явление называется термоэлектронной эмиссией. Образуется электронное облако, обозначенное на рисунке желтым цветом. Вследствие того, что центральный электрод свечи зажигания имеет более высокую температуру, чем боковой, термоэлектронная эмиссия с его поверхности имеет более ярко выраженный характер. Поэтому подача на боковой электрод положительного потенциала приведет к пробою искрового промежутка при меньшем напряжении, чем в противоположном случае.

6 . Так как рассматриваемый процесс пробоя происходит в камере сгорания реального двигателя, то влияние на напряжение пробоя будут оказывать характер движения газов в камере сгорания, их температура и давление в момент искрообразования, материал и температура электродов свечи, а также особенности конструкции применяемой системы зажигания.

7 . Также интересен в прикладном смысле следующий факт. Положительно заряженные ионы представляют собой ядра молекул и обладают значительной массой. Из курса физики известно, что практически вся масса молекулы заключена в ядре, а масса электрона по сравнению с ядром ничтожна. Ионы, достигая отрицательного электрода, получают электрон и превращаются в нейтральную молекулу, но при этом они бомбардируют электрод, разрушая его кристаллическую решётку. На практике это выражается в эрозии электрода. Положительный электрод подвержен меньшему разрушению, ведь его бомбардируют электроны, обладающие малой массой.

Ну и наконец, рассмотрим еще один важный момент, о котором всегда нужно помнить, анализируя осциллограмму высокого напряжения. Обратимся к рисунку.

На нем изображен график изменения давления в цилиндре от угла поворота коленчатого вала при отсутствии воспламенения. Предположим, что момент искрообразования соответствует углу опережения зажигания УОЗ 1 . Давление в цилиндре при этом составит Р1 . Соответственно, в момент УОЗ 2 давление будет равно Р2 . Совершенно очевидно, что давление в момент искрообразования, а соответственно и напряжение пробоя, зависит от угла опережения зажигания.

Следствием этой зависимости является тот факт, что при увеличении частоты вращения путем плавного открытия дроссельной заслонки будет наблюдаться снижение значения напряжения пробоя. И вообще, напряжение пробоя зависит от УОЗ на всех режимах работы двигателя.

А теперь нужно вспомнить о том, что электронный блок управления осуществляет контроль частоты вращения на холостом ходу путем изменения УОЗ. Процесс регулировки можно наблюдать сканером в режиме «поток данных» при работе двигателя с полностью закрытой дроссельной заслонкой. УОЗ при этом изменяется в достаточно широких пределах, особенно на изношенных или неисправных двигателях. Если же приоткрыть дроссельную заслонку и тем самым вывести блок из режима управления частотой вращения, можно увидеть, что значение УОЗ становится достаточно стабильным.
Именно вследствие работы программного регулятора оборотов на осциллограмме высокого напряжения наблюдаются разные значения напряжения пробоя даже в пределах одного кадра:

На основании изложенных соображений представляется несложным прийти к заключению:

1 . Делать какие-либо однозначные выводы из абсолютного значения напряжения пробоя нельзя. Даже на одном и том же двигателе оно будет зависеть от того, какой марки установлены свечи, от формы электродов, от межэлектродного зазора. Зависит оно и от типа установленной системы зажигания и даже от конструкции камеры сгорания. Например, на холостом ходу разных двигателей можно увидеть напряжение пробоя от 5 до 15 кВ, и любое из этих значений будет являться нормальным.

2 . Разброс значений напряжения пробоя на холостом ходу двигателя, оснащенного электронной системой управления, не является дефектом. Это следствие работы алгоритма управления частотой вращения на холостом ходу.

3 . Если имеет место система DIS, то напряжение пробоя в парных цилиндрах всегда будет различным. Это следствие того, что в системе DIS полярность приложенного к свечам напряжения противоположна, соответственно различаться будут и значения напряжения пробоя.

4 . Имеет смысл сравнительная оценка напряжения пробоя в разных цилиндрах. Мотортестеры чаще всего отображают статистические данные: среднее, максимальное и минимальное значение напряжения пробоя. При значительном отклонении в одном или нескольких цилиндрах необходим дальнейший поиск.

Устройство бесконтактной системы зажигания автомобиля

Система зажигания современного авто отличается достаточно сложным устройством, и предназначена для генерации высокого напряжения, необходимого для мгновенного сгорания топливной смеси. В настоящее время основная часть машин штатно оснащается бесконтактной системой зажигания, которая имеет выраженные преимущества перед контактной. В том случае, если авто работает с контактной системой, имеется возможность собственноручной замены ее на более совершенную бесконтактную.

бесконтактная система зажигания

Компоновка системы и принцип ее функционирования

Любая бесконтактная система зажигания состоит из множества конструктивных элементов, в числе основных имеет смысл отметить следующие из них:

  • катушка;
  • регуляторы опережения – центробежный и вакуумный;
  • коммутатор;
  • датчик импульсов;
  • бронепровода и свечи;
  • АКБ.

Принцип работы бесконтактной системы зажигания достаточно прост. С поворотом ключа зажигания начинается поступление тока на монтажный блок, где происходит его распределение между катушкой, стартером, и остальными имеющимися в авто потребителями. Начавший движение коленвал заставляет датчик импульсов посылать сигналы на транзисторный коммутатор. Его задача заключается в остановке подачи тока на первичные обмотки катушки бесконтактной системы зажигания, что позволяет получить на вторичных витках ток высокого напряжения.

система зажигания

Он является пригодным для генерирования сильной искры свечами, к которым ток поступает от распределителя зажигания. Каждая свеча получает ток лишь в определенный момент, соответствующий текущему положению коленвала. Этот процесс контролируется регуляторами опережения зажигания, которые анализируют не только частоту вращения коленвала, но и степень нагрузки на двигатель. При оптимально отрегулированной бесконтактной системе зажигания, искра в свечах образуется достаточной мощности для быстрого воспламенения смеси и ее полного сгорания.

Преимущества — заметные и очевидные

По сравнению с распространенной ранее контактной, бесконтактная система зажигания имеет массу плюсов – они делают ее более приемлемой в современных условиях, несмотря на то, что устройство бесконтактной системы зажигания отличается большей сложностью. Среди основных преимуществ необходимо выделить следующие:

система зажигания

  • сохранение четкого искрообразования при любых оборотах мотора, что стало возможным за счет отсутствия контактной группы в распределителе;
  • увеличенный срок эксплуатации катушки за счет принудительного отключения первичной обмотки, что особенно актуально при включенном зажигании и долго заглушенном двигателе;
  • на средних оборотах двигателя у бесконтактной системы зажигания мощность генерируемой искры до четырех раз больше, нежели в контактной, что позволяет получать хорошую искру даже при сильно загрязненных свечах;
  • отличные показатели и при работе в морозы – даже при сильном уменьшении напряжения в электросети, бесконтактная система не подвержена нарушению искрообразования.

Кроме этого, увеличенная энергия разряда существенно улучшает процесс воспламенения рабочей смеси. Что также благоприятно сказывается на работе силовой установки. Так, отмечается снижение расхода топлива и повышение мощности двигателя. Значительно улучшается и динамика разгона автомобиля, когда фиксируемое некоторое обеднение смеси делает ее быстрое воспламенение затрудненным. Отсутствие подвижных элементов в прерывателе упрощает обслуживание бесконтактной системы зажигания и способствует более адекватному распределению искры.

Неисправности системы – можно ли устранить их самостоятельно

Схема бесконтактной системы зажигания достаточно сложна, особенно для малоопытного водителя, тем не менее, найти и устранить некоторые поломки бесконтактной системы зажигания реально своими силами. При невозможности завести автомобиль ключом зажигания, первое, на что следует обратить внимание – на стрелку вольтметра, встроенного в панель приборов.

При включении зажигания она должна занять среднее положение на шкале, а через некоторое время немного отклониться вправо – это говорит об исправности коммутатора. При отсутствии встроенного прибора, его может заменить контрольная лампа/вольтметр. Контрольный прибор присоединяется к массе и клемме «1» коммутатора. Движение стрелки вольтметра или горение лампы говорит о рабочем коммутаторе. Если при рабочем коммутаторе бесконтактная система зажигания не в состоянии запустить двигатель, необходимо проверить систему на искру.

Источник http://znanieavto.ru/fire/beskontaktnaya-sistema-zazhiganiya.html

Источник http://edukr.ru/avtoyurist—free-consultation/beskontaktnoe-zazhiganie—kak-ono-rabotaet-sistema-zazhiganiya-avtomobilya/

Источник http://mashintop.ru/articles.php?id=2753

Понравилась статья? Поделиться с друзьями: