Что такое cdi на мотоцикле. CDI зажигание Дэшке. Настройка угла опережения зажигания

Содержание

Что такое магнето в автомобиле. Зажигание мотоцикла, какие системы бывают — всё о них. В двигателях внутреннего сгорания

Двигатели современных транспортных средств состоят из множества различных механизмов и компонентов. И ни один из них не является лишним — каждый узел выполняет определенную функцию, так или иначе влияющую на работу мотора в целом. Из этого материала вы узнаете, какое у магнето устройство и принцип работы, и зачем этот элемент нужен.

Описание магнето

Так что же представляет собой электронное магнето, какова его схема работы и принцип функционирования? Ответы на эти вопросы мы дадим далее.

Понятие, предназначение и функции

Магнето являет собой магнитоэлектрическое устройство. Этот компонент предназначен для преобразования механической энергии вращения ротора в напряжение, то есть электрическую энергию. В частности, речь идет об энергии высоковольтного разряда на свечах, которая необходима для обеспечения воспламенения горючей смеси и, соответственно, запуска двигателя. На сегодняшний день установка магнето не является приоритетной задачей для автолюбителей, тем не менее, еще можно встретить авто, которых оснащены магнето (автор видео — канал liampic).

Магнето узел нельзя сравнивать с генератором — это разные устройства, поскольку к магнето можно отнести только генераторные механизмы, возбуждающиеся от постоянных магнитов. Кроме того, обычно они должны быть подключены к высоковольтным трансформаторам силовых агрегатов. В зависимости от конструкции, узел может обеспечивать не только запуск силового агрегата, то есть зажигание, но и электроснабжение всей бортовой сети авто. Но, как правило, механизмы такого типа обеспечивают питанием исключительно системы зажигания.

Также нужно добавить, что в настоящее время на рынке можно найти генераторные узлы на постоянных магнитах с катушками на статоре. Их использование допускается на скутерах и мотоциклах, но в целом такие механизмы универсальны.

В соответствии с конструкцией дополнительная обмотка, которая находится на сердечнике, предназначена для генерирования напряжения в электросети. Магниты могут быть расположены на маховике, предназначенном для возбуждения самого магнето, а также генераторного узла. Устройства такого типа обычно ставятся на снегоходы, гидроциклы, мотоциклы и мотороллеры — в них они функционируют в паре с регуляторами и выпрямителями напряжения. Мощность подобного механизма не высокая, она составляет около 100 ватт, однако этого более, чем хватит для света и зарядки АКБ. Основными достоинствами таких механизмов являются небольшие размеры и сравнительно маленький вес.

Конструкция и принцип действия

Что касается конструкции, то устройство магнето такое:

  1. Подвижный элемент прерывателя зажигания.
  2. Его неподвижный компонент.
  3. Так называемый кулачок.
  4. Башмак магнитопровода.
  5. Роторный узел.
  6. Его ведущая шестеренка.
  7. Ведомая шестеренка механизма.
  8. Свечи зажигания.
  9. Высоковольтный кабель.
  10. Неподвижный электрод.
  11. Подвижный электродный элемент.
  12. Пружинный контакт устройства.
  13. Вторичная обмотка.
  14. Первичная обмотка.
  15. Магнитопроводный компонент.
  16. Конденсатор.

Теперь рассмотрим принцип действия магнето, ведь если вы решили поставить его на свое транспортное средство, вам просто необходимо это знать. Когда контакты замкнуты, в первичной обмотке проходит ток, вызванный действием электромагнитной силы. Благодаря этому току вокруг сердечника и трансформаторного механизма образуется магнитный поток. В тот момент, когда контакты размыкаются, ток больше не передается по механизму, соответственно, магнитное поле становится меньше. В это же время электромагнитная сила образуется во вторичной обмотке — уровень напряжения здесь увеличивается до десятков тысяч вольт.

Поскольку в данный момент подвижный электрод располагается рядом с неподвижным, напряжение будет перемещаться по такому принципу:

  • сначала ток протекает на вторичную обмотку трансформаторного устройства 13;
  • затем он поступает на пружину 12;
  • после этого между электродами образуется искровой поток;
  • далее, искра передается на высоковольтный кабель, отмеченный на схеме номером 9;
  • через провод напряжение поступает на электрод свечи;
  • затем ток по схеме передается на массу силового агрегата и само магнето;
  • от него он поступает на первичную и вторичную обмотки (автор видео — канал Yuriy777888).

В тот момент, когда контакты размыкаются, магнитное поле пересекается и с первичной обмоткой, в результате чего в ней образуется электродвижущая сила. Уровень ее напряжения составляет от двухсот до трехсот вольт, но этого слишком мало для того, чтобы пробить воздушный зазор между контактами. Соответственно, на протяжении какого-то времени через эту цепь будет протекать ток самоиндукции. Этот ток позволяет замедлить пропадание магнитного поля, в результате чего он снижает электродвижущую силу на вторичном участке цепи. Также следует отметить, что чрезмерное искрение в контактах прерывательного элемента может привести к их подгоранию.

Для того, чтобы во время работы контакты не подгорали, к ним подключается конденсатор, позволяющий предотвратить прохождение тока между контактами после их размыкания. Сам ток поступает на зарядку этого элемента. Напряжение в первичной цепи будет наиболее высоким в тот момент, когда ротор выйдет из начального положение на какой-либо угол. Когда это происходит, в узле осуществляется размыкание первичной цепи, благодаря этому обеспечивается наиболее высокий параметр электродвижущей силы. В зависимости от конструкции и вида узла, угол колебания ротора может варьироваться в районе 8-18 градусов.

Фотогалерея

Видео «Как установить и отрегулировать магнето?»

Подробная инструкция на тему самостоятельной установки и регулировки магнето представлена на видео ниже (автор ролика — канал MegaMpal).

П ри вращении магнита его полюсные наконечники поочерёдно проходят мимо стоек магнето. При этом магнитный поток замыкается через сердечник трансформатора. Когда магнит устанавливается параллельно стойкам (в нейтральном положении), магнитный поток замыкается через башмаки стоек. Следовательно, за один оборот двухполюсного магнита в сердечнике трансформатора магнитный поток меняется дважды. Изменяющийся магнитный поток (как по значению, так и по направлению) пересекает витки первичной и вторичной обмоток. В первичной обмотке наводится переменный ток низкого напряжения (12-20 В), который течёт по цепи: первичная обмотка – замкнутые контакты прерывателя – «масса» магнето – первичная обмотка. Во вторичной обмотке создаётся ЭДС (электродвижущая сила) порядка 1,0-1,5 кВт, которая не пробивает промежуток свечи.

П ри отклонении магнита от нейтрального положения в сторону вращения на угол 8-10 градусов, который именуется углом отрыва (абрис), в первичной обмотке течёт наибольший ток, создающий максимальный магнитный поток вокруг катушки. В этот момент кулачок прерывателя размыкает контакты. При этом тока и магнитного потока первичной обмотки нет. Исчезающий магнитный поток пересекает вторичную обмотку и индуктирует ней ток высокого напряжения (11-24 кВ), который подводится по проводу (7) [рис. 1] высокого напряжения к свече (6), где пробивает искровой промежуток, воспламеняет рабочую смесь, а потом по «массе» и первичной обмотке возвращается во вторичную.

Рис. 1. Схема одноискрового магнето М-124Б.

1) – Жёсткая полумуфта;

4) – Первичная обмотка;

5) – Вторичная обмотка;

6) – Свеча зажигания;

7) – Провод высокого напряжения;

8) – Вывод высокого напряжения;

10) – Стойка неподвижного контакта;

11) – Рычажок неподвижного контакта;

15) – Кнопка выключателя;

17) – Клемма дистанционного выключателя зажигания;

19) – Пластмассовый наконечник;

20) – Резистор подавления радиопомех.

О дновременно со вторичной обмоткой исчезающий магнитный поток пересекает первичную обмотку, в которой наводит ЭДС самоиндукции (достигает 300 В). Электродвижущая сила самоиндукции, стремясь поддержать прежнее направление тока, заряжает конденсатор, который сразу же разряжается через первичную обмотку в обратном направлении, создавая магнитный поток противоположного направления исчезающему. Это способствует более резкому пересечению вторичной обмотки магнитными силовыми линиями и повышению вторичного напряжения. При отсутствии либо пробое конденсатора резкого пересечения витков вторичной обмотки не происходит, ввиду того, что поддерживается прежнее направление тока через конденсатор либо зазор 0,25-0,35 мм между контактами прерывателя, пробиваемый ЭДС самоиндукции. Вторичное напряжение не достигает требуемого значения и искра в зазоре 0,6-0,75 мм свечи исчезает либо обладает недостаточной энергией.

Е сли контакты прерывателя будут размыкаться при абрисе (углах отрыва), не соответствующих максимальному току в первичной обмотке, вторичное напряжение может оказаться недостаточным для пробоя искрового промежутка свечи.

В случае снятия провода высокого напряжения со свечи при работе двигателя происходит повышение вторичного напряжения примерно в 1,5 раза. Для защиты вторичной обмотки от пробоя в магнето предусмотрен предохранительный искровой промежуток 10-12 мм между выводом (9) [рис. 2, а)] высокого напряжения и специальным электродом (10) (винтом либо выступом).

Рис. 2. Устройство магнето.

а) – Магнето М-48Б1:

3) – Электрод вывода;

4) – Электрод бегунка;

9) – Вывод катушки;

10) – Электрод дополнительного разрядника;

11) – Корпус муфты опережения зажигания;

16) – Ведущий фланец;

19) – Ведомый фланец;

б) – Прерыватель магнето М-124Б1:

2) – Неподвижный контакт;

3) – Рычажок подвижного контакта;

5) – Пружина подвижного контакта;

8) – Фильц для смазывания;

9) – Кулачок прерывателя;

10) – Кнопка ручного выключателя зажигания.

З ажигание выключают, соединяя первичную обмотку катушки с корпусом («массой») кнопкой (15) [рис. 1] магнето либо выносным выключателем (17).

Система зажигания двигателя включает в себя магнето маховичного типа, провод высокого напряжения, свечу зажигания и кнопку выключения зажигания. Контактное магнето (рис. 4.6, а) состоит из постоянных магнитов, закрепленных в ободе маховика, и основания, на котором смонтированы катушки зажигания, прерыватель и конденсатор

Устройство и работа

Магнето — специализированный генератор переменного тока с возбуждением от вращающегося постоянного магнита (магнитного ротора или якоря).
Автомобильное магнето имеет обмотки низкого и высокого напряжения. Параллельно обмотке низкого напряжения (НН) включаются контакты прерывателя и конденсатор (~0,1 мкФ); выводы обмотки высокого напряжения (ВН) подключаются один на корпус, второй на свечу. Все обмотки намотаны на ярмо (сердечник) и выглядят как одна большая катушка на П-образном сердечнике, между полюсами сердечника находится продольно намагиченный вращающийся магнит (телефонные и минно-подрывные (КПМ) индукторы устроены иначе, но принцип действия тот же). В качестве части обмотки высокого напряжения может выступать обмотка низкого напряжения, то есть возможна автотрансформаторная конструкция, это позволяет уменьшить количество витков обмотки ВН.

Цена Fob: US $3 — 4.5 Порт: QINGDAO
Количество минимального заказа: 500 Комплект/комплекты
Способность поставки: 80,000 Комплект/комплекты в Месяц
Срок поставки: 15days
Термины компенсации: L/C,T/T

Инструкция по эксплуатации

1. Главные части бензопилы:
— держалка (состоит из хваталки, нажималки и наступалки)
— дребезжалка (состоит из пупка, рычажка, кнопки, дергалки, двух винтиков, бензобака и маслобака)
— пилилка (такая длинная плоская дрына впереди торчит, состоит из полотна и надетой на нее цепи — не золотой!!
— система обеспечения безопасности оператора бензопилы в случае резкого отбоя полотна с работающей цепью вверх и предохранения травмирования оператора бензопилы полотном с движущейся цепью в области головы, спины, другого оператора бензопилы (над/перед пилилкой такой хитрый пластиковый ухват)

2. Перед тем, как зажжужать
а) Залейте в пилу два магических раствора.
Первый раствор сложен в изготовлении и состоит из легковоспламеняющейся ядовитой жидкости «Бензин АИ-95» и волшебного состава «Масло для двухтактных двигателей» смешанных в соотношении 40 к 1.

Отмерять пипеткой, мензуркой, пробиркой с точностью до капли. Допускается отмерять пробками, колпачками, рюмками, стаканами.
Допускается менять соотношение от 30 к 1 до 50 к 1 +- 5 к 1

Полученный раствор отличается привлекательным цветом и запахом.
Раствор необходим для дребезжалки.
Отличительная особенность правильно приготовленного раствора — дребезжалка заработает по волшебному слову. Если дребезжалка не заработает, следует заменить волшебное слово на более волшебное.

Наружное! В случае употребления состава вовнутрь, закусить углем и закурить.
Около 300 миллилитров первого раствора заливается под большую горловину бензопилы (около держалки).
Второй раствор заливается в маленькую горловину (около пилилки). К нему можно отнести любое масло, моторное, трансмиссионное, нигрол, минералка, синтетика и полу-, касторовое и, по слухам, даже отработку.
Внимание! Холодный пуск на густом масле не должен быть затруднен.
Емкость бака — около 100 миллилитров. Раствор необходим для работы пилилки.

б) Проверить правильное состояние пилилки.
Цепь в середине полотна, если потянуть ее, должна отходить на 4-5 мм. Если больше или меньше — цепь необходимо подтянуть.

Это делается так:
— в чемодане лежит волшебный ключик (не золотой)
— одним концом ключа ослабляются на 1-2 оборота две гайки близко к полотну, со стороны, обратной пробкам
— второй стороной ключа крутится маленький винт рядом с полотном, перпендекулярный плоскости гаек
— по часовой стрелки — для натяга, против часовой — для ослабления
— проверяем натяжение цепи
— затем снова первой стороной ключа затягиваем две большие гайки
3. Для того, чтобы зажжужжать

а) залейте оба волшебных состава в специально отведенные для них емкости. не давайте составам смешиваться!!
б) закройте специальные емкости специальными пробками
в) взведите «систему обеспечения безопасности. » (сильно и резко нажмите ее по направлению к пилилке, она либо легко нажмется, либо щелкнет — сработала, значит. после чего потяните ее на себя с большим усилием до возникновения глухого стука — курок взведен)
г) отследите положение кнопки на дребезжалке (кнопка должна быть в состоянии OFF)
д) несколько (5-6) раз нажать на резиновый пупок рядом с большой пробкой, пока в нем (в пупке) не появится волшебная жидкость номер 1.
е) несколько (3-4) раз дергануть за дергалку на полный ход, дабы обеспечить поступление обеих жидкостей во все необходимые трубочки и щелочки
ж) разогнать окружающих на дистанцию не менее 5 метров, особо назойлевых можно не отгонять, а дать им подержаться за пилилку
з) включть кнопку. (перевести в положение ON)
и) поставить бензопилу на землю
к) проследить, чтобы пилилка не касалась земли — это не лопата, а
л) наступить правой ногой на наступалку
м) резко дернуть 2-3 раза правой рукой за дергалку
н) дребезжалка не включится
о) сказать волшебное слово
п) пнуть дребезжалку
р) попробовать вытянуть синий рычажок (подсос) рядом с нажималкой
с) вдруг поможет
т) хотя никогда не помогает
у) но должен
ф) даже, вроде, помог пару раз
х) на всякий случай, сказать волшебное слово
ц) повторить операции е-к-л-м-н
ч) в случае неудачи, повторить операции е-п-р-с-т
ш) если, паче чаяния, дребезжалка заработала — сказать волшебное слово
щ) непрогретая дребезжалка может не держать холостой ход даже на подсосе, поэтому включите пилилку, нажав пальцами правой руки на нажималку, предварительно ладонью правой руки нажав сверху предохранялку. Рычажок подсоса при этом автоматицски втянется..
ВНИМАНИЕ. Работающая пилилка — страшное оружие. Не давайте ее детям, беременным женщинам, старикам, слабонервным и суровым сибирским лесорубам!!
ъ) если все вышеперечисленные операции не помогли — сказать волшебное слово
ы) есть хитрость, которая почти всегда работает. Наступите на наступалку правой ногой, одновременно ей же (правой ногой) подожмите снизу нажималку, для чего сначала нажмите предохранялку.
ь) после чего снова дергануть за дергалку
э) при этом непрерывно говорить волшебные слова
ю) дребезжалка задребезжит
я) сказать последнее волшебное слово — можно воевать

4. Как воевать.
— при нажатии на нажималку начинает работать пилилка
— если при нажатии на нажималку пилилка не работает, значит сработала «система обеспечения безопасности..
— в этом случае выключите дребезжалку и снова взведите «систему обеспечения безопасности..
— не держите пилилку долго работающей на холостом ходу (без вгрызания) — ей это вредно
— выберите жертву и аккуратно подойдите к ней. старайтесь не спугнуть.
— запрещается тыкать в жертву концом пилилки — последстви ямогут быть печальны — полотно взлетит вверх. если руки сильные — в лицо, если слабые — в спину. даже волшебное слово сказать не успеешь..
— пилилка вводится в мякоть жертвы нижней стороной полотна, желательно ближе к середине полотна
— можно сверху, снизу, сбоку
— в случае пропила снизу-вверх допускается работать верхней стороной полотна, но быть при этом крайне осторожным, не давить со всей дури вверх — последствия описаны выше
— если во время атаки жертва сопротивляется и защемляет в себе полотно, постарайтесь предусмотрительно извлечь его из ловушки, и атаковать чуть со стороны, чтобы расширить края рваной раны
— если это не удалось и полотно попало в ловушку, пилилку заблокировало и она не работает — выключите дребезжалку и подручными средствами (ломы, топоры, другие операторы) постарайтесь расширить ловушку, чтобы извлечь пилилку. не тяните из ловушки бензопилу со всей дури — жертве больно
— при , стойте слева от нее, так, чтобы плоскость полотна проходила мимо вас, чуть правее. так, на всякий случай.
— полностью заправленных баков хватает на 30-40 минут непрерывной работы дребезжалки или на 2-3 крупных жертвы
— не рекомендуется применять пилилку к окружающим — они могут обидеться
— рекомендуется работать в закрытой обуви, ибо из-под пилилки лупит нехилая струя опилок аккурат на ботинок. потом замучаетесь занозы из носков доставать

5. Чтобы не жужжать
а) нажать кнопку в положение OFF
б) сказать волшебное слово

6. Вернуть все как было
— старайтесь не оставлять жидкости в баках — вытекут!
— убрать бензопилу в чемодан
— не потерять волшебный ключик
— его тоже убрать в чемодан
— туда же убрать бело-желтый флакон с магической жидкостью
— сказать волшебное слово

Что такое магнето? Работа магнето

Магнето -это магнитоэлектрический генератор переменного тока, создающий электрические разряды между электродами свечи зажигания для воспламенения рабочей смеси в цилиндрах двигателей внутреннего сгорания. Работа магнето основана на принципе электромагнитной индукции.

Сущность индукции заключается в следующем: когда магнитное поле пересекается замкнутым проводником, в этом проводнике возникает электрический ток. Когда электрический ток проходит по проводнику, вокруг этого проводника возникает магнитное поле. Магнитное поле — пространство вокруг какого-либо магнита, в котором проходят магнитные силовые линии (или магнитный поток).
Линии эти расположены гуще между полюсами магнита. Переменный ток может быть возбужден в проводнике при быстрой перемене направления пересекающего его магнитного потока, например, при поворачивании магнита вокруг проволочной катушки.

На этом принципе основана работа магнето с вращающимся магнитом. Когда магнит вращается, магнитный поток, проходящий через стержень, изменяется по величине и направлению; в результате в обмотке возникает электрический ток, сначала в одном направлении, а затем в другом. Конденсатор служит для улучшения работы магнето. При наличии конденсатора образуется сильная искра, без него — слабая. Конденсатор присоединен параллельно контактам прерывателя, для того чтобы ослабить искрообразование, возникающее при прерывании первичного тока на контактах прерывателя.

Как работает магнето?

Когда магнит вращается, он возбуждает ток и первичной обмотке, замкнутой накоротко контактами прерывателя. Когда сила тока в первичной цепи достигает своего максимума, контакты прерывателя размыкаются. Первичный ток из-за этого мгновенно прерывается. Магнитное поле, которое было создано первичным током, также исчезает. Это внезапное изменение магнитного поля возбуждает во вторичной цепи ток высокого напряжения, способный пробить зазор между электродами соответствующей свечи. Дальнейшее вращение ротора магнето вызывает образование новой искры и т. д.

Как проверить техническое состояние магнето?

В процессе повседневной эксплуатации работоспособность магнето можно проверить так: подключите высоковольтный провод к выводу высокого напряжения и держите другой конец провода на расстоянии 5-7 мм от корпуса магнето, резко поверните ротор по ходу вращения. При этом правильно собранное и отрегулированное магнето при резком поворачивании ротора должно дать искру, обеспечивающую пробой вышеуказанного промежутка. Если же искры нет или она слабая — проверьте исправность магнето и изоляции провода.

Система зажигания двигателя включает в себя магнето маховичного типа, провод высокого напряжения, свечу зажигания и кнопку выключения зажигания. Контактное магнето (рис. 4.6, а) состоит из постоянных магнитов, закрепленных в ободе маховика, и основания, на котором смонтированы катушки зажигания, прерыватель и конденсатор. Катушка зажигания состоит из сердечника 5 и намотанных на него первичной 4 и вторичной 6 обмоток трансформатора. Прерыватель включен последовательно с первичной обмоткой катушки зажигания. Контакты прерывателя размыкаются с помощью кулачка на коленчатом валу.

Основание установлено в левой половине картера на двух шпильках с гайками. Свеча зажигания состоит из корпуса, бокового и центрального электродов и изолятора. Кнопка выключения зажигания соединена последовательно с первичной обмоткой катушки зажигания. Магниты, установленные на маховике, создают магнитное поле, которое пересекает обмотка катушки зажигания. При замкнутых контактах в первичной обмотке индуктируется ток низкого напряжения, при их размыкании магнитное поле исчезает, что вызывает индуктирование электродвижущей силы (ЭДС) во вторичной обмотке. Индуктируемый ток высокого напряжения поступает к свече зажигания и образует электрическую искру между электродами свечи. Система отрегулирована так, что искра появляется в тот момент, когда поршень не доходит до верхней мертвой точки на 3.. .4 мм, или на угол 28°» по окружности вращения коленчатого вала, называемый углом опережения зажигания.
На двигатель мотопил МП-5 «Урал-2 Электрон» и «Тайга-214-Электрон» устанавливают бесконтактные электронные магнето (рис. 4.6, б), не имеющие механического контактного прерывателя. Основной принцип работы бесконтактного магнето такой же, как и контактного. Индуктирование тока происходит с помощью высоковольтного трансформатора, который принципиально не отличается от трансформатора контактного магнето.

Первичная обмотка трансформатора соединена последовательно через зарядную обмотку, диод с конденсатором и через обмотку управления с тиристором. Тиристор пропускает электрический ток (открывается) только в том случае, когда на его управляющий электрод подается электрический потенциал определенной величины. При открытии тиристора (когда он становится проводником) конденсатор через первичную цепь разряжается на массу, через первичную обмотку проходит значительный импульс тока и во вторичной обмотке индуктируется высокое напряжение, создающее искру зажигания на свече. Таким образом, управляющая обмотка и тиристор выполняют функции бесконтактного прерывателя, который не имеет трущихся частей и механического износа.

Для охлаждения двигателя на маховике закреплена крыльчатка, закрытая крышкой в виде улитки, а на цилиндре установлен дефлектор. Воздух нагнетается вентилятором через отверстие, улитку и дефлектор и охлаждает стенки цилиндра. Двигатель охлаждается также рабочей смесью, поступающей в картер через всасывающий патрубок.

Магнето — магнитоэлектрическая машина, преобразующая механическую энергию в электрическую. Данное магнето М-151 двухискровое левого вращения с пусковым ускорителем, производится «КЗАТЭ» г. Самара. Стоимость продажи изделия зависит от непосредственно входной цены для предприятия. В настоящее время магнето М151 снято с производства но несмотря на это имеет высокий потребительский спрос. Магнето М-151 перестало выпускаться 1985 г. (период СССР), ей на смену пришли электронные магнето М137А и позже (после снятия с производства магнето М137А) пришли магнето 1302.3728 изготовленные по ТУ 37.460.076-90.

В нашем ассортименте есть такая услуга как проведения ремонта. Ремонт магнето М-151 занимает несколько дней, а стоимость приятно удивит любого обладателя вышедшего из строя изделия. Применяется на двигателях УД-15 и мод. УД-25 и мод; СК-6, СК-12; ПД-15; ДУ-54, бензоагрегат АБ-4, минитрактор Т-012, а так же для мотопомп от 125 м.кубчас и выше.

Магнето М-151 имеет дистанционную и нажимную клеммы включения зажигания. Корпус выполнен в пыленепроницаемом исполнении. Магнето в сборе с пусковым ускорителем обеспечивает угол запаздывания 30°+10° по валу ротора магнето. Монтируется на двигатель при помощи фланца на три шпильки. Магнето М151 вы можете заказать в любое время так как данную позицию мы всегда стараемся держать на складе в достаточном количестве. Доставка по Украине совершается транспортными компаниями в кратчайшие сроки. Для заказа обратитесь к нам через обратную форму заказа либо по телефонам указанным в разделе контакты. Купить магнето м 151 либо заказать его ремонт выбирать конечно же Вам но стоит обратить внимание на стоимость и того и другого, что в нынешний экономических условиях не мало важно.

Принимаем на ремонт любые магнето М 151 в любом состоянии. Сама катушка зажигания к магнето м151 как отдельный узел в настоящее время отдельно к сожалению не продается. Фото магнето М151 выложенное у нас на сайте является уникальным и оригинальным. Будим признательны за размещения обратных ссылок на наш сайт .

Магнето М-151

Предлагаем к реализации магнето М151. Магнето М-151 2х контактное устанавливается на бензиновые двигателя УД15, УД25. Произведем ремонт Вашего магнето. Мы предлагаем магнето различных марок моделей и модификаций. В частности магнето М151 как правило всегда есть в наличии.

Магнитоэлектрическая машина, преобразующая механическую энергию в электрическую. В настоящее время применяется в системах зажигания для двигателей внутреннего сгорания

В двигателях внутреннего сгорания магнето обеспечивает импульс электрического тока к свечам зажигания в некоторых бензиновых двигателях внутреннего сгорания, в которых не применяются батареи. Такие двигатели обычно четырёхтактные или двухтактные, которые используются в мопедах, газонокосилках и цепных пилах. В самолётах у каждого цилиндра обычно есть две свечи зажигания, подключённых к отдельному магнето. Такая конструкция создаёт избыточность в случае отказа одного из магнето, а две искры обеспечивают более полное и эффективное сгорание топливной смеси.

Рисунок 1. Устройство магнето М-151

Встречается такое описание системы зажигания и воспламенение смеси в камере сгорания осуществляется свечой зажигания 1 от магнето высокого напряжения 6 (рис. 1). Часто путают применения и наименование таких магнето как М-151, М-137 и М-149 (М-149А, М-149А1). Итак магнето М-137 является одноискровым и устанавливается на двигателе УД-15 (рис.2), в свою очередь магнето М-151 является двухискровое, специальное с дистанционной и нажимной клеммами выключения зажигания, пыленепроницаемого исполнения, левого вращения с пусковым ускорителем и устанавливается на двигателья УД-25. Так же есть такое магнето как Магнето М-149 (М-149А, М-149А1), данное магнето устанавливают на тяжелых тракторах Т-130, Т-170, Б10М. Магнето М-149А1 является двух контактным но не смотря на это магнето М-151 и М-149 не являются взаимозаменяемыми так так тактовая частота срабатывания контактов разная, соответственно и синхронизация импульсов разная.

Рекомендуется к прочтению  Причины пропуска зажигания в инжекторных двигателях

Магнето в сборе с пусковым ускорителем обеспечивает угол запаздывания 30°+10° по валу ротора магнето. Крепление магнето к двигателю — фланцевое, на трех шпильках.

Конструктивно магнето М-151 состоит из следующих основных узлов:

  • корпус,
  • ротор,
  • крышка,
  • трансформатор,
  • пластина прерывателя,
  • кожух с распределителем ,
  • пусковой ускоритель.

Детальное описание магнето М-151.

Корпус отлит из цинкового сплава, в нем залиты полюсные башмаки, внутри корпуса имеется расточка, в которую запрессовывается наружное кольцо шарикоподшипника. На корпусе смонтированы нажимная и дистанционная клеммы выключения зажигания. Со стороны фланца в корпусе ввернут упор пускового ускорителя. Ротор предназначен для создания и изменения (при его вращении) величины магнитного потока, проходящего через полюсные наконечники корпуса и сердечник трансформатора. Ротор состоит из валика и пакета ламелей, напрессованных на магнит. Вал и магнето с ламелями скреплены с помощью заливки цинковым сплавом. На валу ротора имеется конус для посадки пускового ускорителя. Крышка отлита из цинкового сплава, в ней имеется расточка, в которую запрессовывается наружное кольцо шарикоподшипника, в крышке монтируется пластина прерывателя, конденсатор, большая шестерня редуктора с осью и разрядник. В нижней части крышки предусмотрено сточное отверстие. Трансформатор предназначен для создания высокого напряжения при вращении ротора магнето, состоит из сердечника, собранного из отдельных пластин электротехнической стали, а также первичной и вторичной обмоток. С торцов трансформаторов защищен гетинаксовыми щеками, на которых укрепляются латунные шайбы. К одной из шайб припаивается конец первичной обмотки. Пластина прерывателя служит для монтажа рычага прерывателя контактной стойки и фильца для смазки кулачка. Кожух с распределителем. Кожух отлит из цинкового сплава и служит экраном для распределителя высокого напряжения. В кожухе имеются два вентиляционных окна. Распределитель выполняется из прессматериала и служит для распределения высокого напряжения на свечи двигателя.

Пусковой ускоритель предназначен

для сообщения ротору магнето большой скорости вращения отдельными импульсами, при запуске двигателя и обеспечения таким образом при медленном вращении коленчатого вала двигателя достаточно сильной искры от магнето;

Для обеспечения запаздывания момента зажигания при запуске двигателя.

Пусковой ускоритель состоит из следующих основных частей:

а) собачкодержателя с одной собачкой. Втулка собачкодержателя имеет одну шпоночную канавку для монтажа пускового ускорителя на шпонку ротора магнето.

б) корпуса с пальцами и пружиной.

Приводится магнето от шестерни регулятора с помощью промежуточной муфты. По требованию заказчика на деталях системы зажигания двигателей устанавливается экранировка для подавления радиопомех. Магнето в сборе с пусковым ускорителем обеспечивает угол запаздывания 30°+10° по валу ротора магнето.

Рисунок — 2. Магнето М-137А одноискровое с пусковым ускорителем левого вращения

1 – крышка прерывателя; 2 – кулачок; 3 – шарикоподшипник; 4 – крышка; 5 – контакт с пружиной; 6 – трансформатор; 7 – корпус; 8 – ротор; 9 – пусковой ускоритель; 10 – прерыватель; 11 – кнопка выключения зажигания.

Рисунок — 3. Магнето М-151 двухискровое с пусковым ускорителем

1 – корпус; 2 – ротор; 3 – трансформатор; 4 – крышка; 5 – кожух с распределителем; 6 – пусковой ускоритель; 7 – пластина прерывателя; 8 – кнопка выключения зажигания

Рисунок — 4. Магнето М-149 двухискровое с пусковым ускорителем

1) – Рычаг прерывателя с контактом; 2) – Стойка; 3) – Основание прерывателя; 4) – Неподвижный контакт; 5) – Кулачок; 6) – Фильц; 7) – Эксцентрик; 8) – Спиральная пружина; 9) – Собачкодержатель; 10) – Трансформатор; 11) – Конденсатор; 12) – Дополнительный вывод высокого напряжения; 13) – Крышка экрана; 14) – Экран; 15) – Бегунок; 16) – Крышка распределителя; 17) – Пластина прерывателя; 18) – Крышка корпуса магнето; 19) – Ротор; 20) – Корпус магнето; 21) – Пусковой ускоритель.

Зажигание мотоцикла, мопеда, снегохода, квадроцикла и другой мото-техники несомненно является одной из важных систем, обеспечивающих надёжный пуск и бесперебойную работу двигателя, в любых погодных условиях. В этой статье, больше рассчитанной на новичков, я постараюсь подробно описать разные системы зажигания, от самых простых и древних, выпущенных ещё в прошлом веке, до самых современных и сложных цифровых систем, устанавливаемых на самую современную мото-технику и не только. Так же я опишу особенности разных конструкций, их преимущества и недостатки, способы изготовления самодельных бесконтактных устройств, а так же другие нюансы, связанные с системой зажигания.

А если кое что, связанное с системами зажигания я уже написал у себя на сайте в других статьях, то конечно же я не буду повторяться в этой статье, а просто буду ставить соответствующую ссылку, по которой уважаемый читатель сможет перейти, при желании, для более глубокого ознакомления, и так — поехали.

Зажигание мотоцикла — для чего и как.

Так как статья рассчитана для новичков, то следует начать с азов и написать пару слов о назначении и принципе работы системы зажигания. Как знают многие, основная функция системы зажигания — это воспламенение рабочей смеси (с помощью ) в камере (камерах) сгорания , или иной мото-техники.

Я думаю многие знают, что рабочая смесь в камере сгорания поджигается электрической дугой от 20 до 40 киловольт (мощность зависит от конструкции системы зажигания и об этом мы ещё поговорим, рассматривая разные системы). Когда в камеру сгорания (или в камеры, если мотор многоцилиндровый) двигателя поступает и сжимается поршнем рабочая смесь (смесь топлива и воздуха в определённой нормальной пропорции, то есть 14,5 кг воздуха на 1 кг топлива), то её нужно поджечь в нужный момент.

Этот момент ещё называется опережением зажигания, так как смесь нужно поджечь чуть ранее, с опережением примерно за 1 — 3 мм., не доходя поршнем до ВМТ — об углах установки опережения зажигания я написал вот в , а о регулировке зажигания тяжёлых отечественных мотоциклов желающие ).

Так вот, в определённый момент (момент зажигания) рабочую смесь нужно поджечь электрической дугой (искрой), проскакивающей между электродами свечи зажигания, для того чтобы в процессе сгорания рабочей смеси, расширяющиеся в процессе сгорания газы смогли толкнуть вниз, чтобы он смог с помощью совершить механическую работу. Надеюсь это понятно, идём далее.

А далее следует написать немного для новичков, откуда берётся волшебный и мощный высоковольтный разряд на контактах . А разряд происходит благодаря трансформаторной катушке зажигания. Чтобы понять как она работает (принцип работы трансформатора) следует вспомнить курс школьной физики и явление электромагнитной индукции.

Вспомните, взглянув на рисунок 1 б, как в витки проволочной обмотки (простейшая катушка) мы помещали магнит, а к виткам подключали лампочку. А когда мы начинали двигать магнитный стержень, то в витках появлялся электрический ток и о чудо! — лампочка начинала светиться. Если же вместо лампочки подсоединить источник постоянного тока (аккумулятор или батарейку), как показано на рисунке 1 а, то обычный металлический стержень, помещённый в обмотки простейшей катушки, превратится в электромагнит.

Оба описанных мной чуть выше физических явления и используются для получения электрической искры на контактах свечи в системах зажигания. Только на катушке (как и на трансформаторах — по сути это одно и то же) должны быть две обмотки с разным количеством витков: первичная и вторичная.

А когда через первичную обмотку катушки зажигания проходит электрический ток, то сердечник, на который намотаны витки -намагнитится. Если же резко отключить ток (например с помощью кулачка и размыкающихся контактов прерывателя в контактной системе зажигания — она будет рассмотрена подробнее ниже), то пропадающее магнитное поле сердечника катушки, с помощью электромагнитной индукции, индуцирует (или индуктирует) на вторичной обмотке катушки напряжение.

А так как во вторичной обмотке катушки зажигания в несколько сотен раз больше витков проволоки, то индуцируемое напряжение на выходе катушки (на высоковольтном проводе) будет уже не 6 или 12 вольт, а во много раз больше, как я отмечал выше — примерно от 20 до 40 тысяч вольт (Кв — киловольт).

Принцип работы системы зажигания ещё можно наглядно глянуть в видеоролике внизу, под этой статьёй.

Рассмотрев выше общий принцип работы и появления искры, далее мы рассмотрим какие бывают системы зажигания, от самой древней и простой системы до более сложных и современных, а так же рассмотрим какие компоненты входят в конструкцию разных систем зажигания мотоциклов. Если же кого то интересуют более современные системы зажигания, то следует просто перемотать колёсико мыши вниз, пропустив более древние системы зажигания.

Системы зажигания мотоцикла — какие они бывают (от простого к сложному).

СИСТЕМЫ ЗАЖИГАНИЯ БЕЗ ДОПОЛНИТЕЛЬНОГО ИСТОЧНИКА ТОКА (без аккумулятора).

Магнето — это самая древняя и простая система зажигания, которая использовалась на старой мото-технике ещё прошлого века. Она используется и сейчас, в немного изменённом виде, в котором отсутствуют контакты прерывателя (система СDI) на некоторых мотоциклах, снегоходах, гидроциклах, мопедах, бензопилах, газонокосилках и др. мототехнике. Основное преимущество этой системы — это отсутствие аккумуляторной батареи, что было очень актуально для военных мотоциклов, а так же для советской мото-техники во времена дифицита мотоциклетных (и не только) аккумуляторов в советское время.

Также отсутствие аккумуляторной батареи важно и на кроссовых мотоциклах, где имеет значение каждый грамм веса, и даже на бензопилах. Но на современных кросачах и бензопилах стоят более современные системы зажигания (о них я расскажу ниже), но принцип магнето (магдино) и отсутствия батареи сохранился и поныне.

Ну а основное отличие магнето от магдино в том, что в магдино ещё имеются дополнительные обмотки генератора, служащего для питания потребителей мотоцикла. То есть если на мотоцикле генератор расположен не отдельно от магнето, а в одном приборе, то это магдино. А если на мотоцикле две независимые системы зажигания и освещения, то на таком мотоцикле установлено магнето.

Двигатель мотоцикла с магнето будет работать даже если снять с него не только аккумулятор, но и генератор, так как это две независимые системы (система зажигания работает от магнето и не зависит от генератора и аккумулятора, работающих на освещение и другие потребители). У меня у самого есть в личном пользовании прекрасный мотоцикл Симсон 425 S 1961 года выпуска с зажиганием от магнето, который я могу завести даже если снять с него генератор и аккумулятор.

Зажигание мотоцикла — магнето с неподвижными обмотками.

Магнето по сути представляет из себя простейший генератор переменного тока, который создает переменный ток низкого напряжения, но этот ток благодаря обмоткам встроенного в магнето трансформатора превращается в импульсный высоковольтный ток, способный пробить искру между контактами свечи зажигания.

Как видно на рисунке 2, магнето состоит из магнитной системы и электрической. В магнитной системе имеются постоянные магниты, железный сердечник якоря и полюсные башмаки. А электрическая часть магнето представляет собой трансформаторную катушку зажигания и прерыватель тока, ну и имеется конденсатор. Эта система механического прерывателя аналогична контактной батарейной системе зажигания мотоциклов и я её опишу чуть ниже, в разделе батарейное контактное зажигание.

Мотоциклетные магнето бывают двух систем: одна из них с неподвижными обмотками, а вторая наоборот — с неподвижными постоянными магнитами. Ниже мы рассмотрим обе системы более подробно.

Любое магнето (без особой переделки) работает и выдаёт искру только при вращении ротора в одну определённую сторону. И поэтому выпускали и выпускают магнето с вращением как в правую, так и в левую сторону. Как правило на многих магнето на корпусе (а у маховичного магнето на самом маховике) нанесена стрелка, показывающая как должно (вправо или влево) вращаться магнето при работе двигателя.

Чтобы заглушить двигатель, работающий от магнето, нужно закоротить на корпус (массу) мотора провод, идущий от первичной обмотки катушки зажигания.

Как я написал выше, магнето бывают двух систем и ниже мы чуть подробнее рассмотрим каждую из них.

Система магнето с неподвижными обмотками .

Этот тип магнето стоит ни на моём мотоцикле Симсон 425 S и такой тип ещё называют магнето с магнитным ротором, так как в вращающемся роторе имеются постоянные магниты. У такого магнето вращается только магнит (магнитный ротор), а стальной сердечник 5 (см. рисунок 2 а), с намотанной на нём обмотками катушки зажигания 3 и электролитическим конденсатором 7 закреплены в корпусе магнето неподвижно, который уменьшает искрение на контактах прерывателя и усиливает искру между контактами свечи зажигания.

В системе этого магнето (так же как и в батарейной контактной системе зажигания) ещё имеется прерыватель 8 невращающегося типа, благодаря которому происходит образование искры (я об этом уже писал выше — контакты прерывают ток и тем самым во вторичной обмотке катушки зажигания индуктируется высокое напряжение, поступающее по высоковольтному проводу на свечу зажигания 1).

Принцип работы этого магнето довольно прост: магнитный ротор 6 от привода двигателя вращается между полюсными башмаками стального сердечника катушки зажигания, которая расположена в средней части сердечника (см. рисунок 2 а). При вращении ротора, при каждом его обороте магнитный поток дважды меняется по направлению и величине.

И так же как и в магнето с вращающейся обмоткой якоря (о таком магнето я напишу ниже) при изменении магнитного потока в первичной 4 и во вторичной 2 обмотках катушки зажигания индуктируется электродвижущая сила, которая тем больше, чем больше скорость вращения ротора и соответственно больше скорость изменения магнитного потока.

Ну а когда контакты прерывателя 8 находятся в замкнутом состоянии, то в первичной обмотке имеется ток. А когда край магнита ротора начинает отходить от башмака на 2 — 3 мм (см. рисунок 2 а), то в этот момент контакты прерывателя начинают размыкаться с помощью кулачка 9. От этого в первичной обмотке катушки зажигания ток изчезает, а во вторичной обмотке индуктируется высоковольтный ток, который проходя по высоковольтному проводу попадает на контакты свечи зажигания 1, между которыми проскакивает искра.

Основным недостатком магнето является то, что напряжение, необходимое для надёжного искрообразования на свече зажигания, появляется только при числе оборотов ротора не менее 1000 в минуту, а это не всегда возможно при проворачивании мотора кикстартером и при запуске и от этого могут возникнуть трудности с пуском (особенно если ещё контакты прерывателя подгоревшие). Если имеется кикстартер, или если пробовать заводить мотоцикл с толкача (что многие и делают, а например на мопедах с педальным приводом только так и заводят моторчик), то шансы пустить двигатель существенно увеличиваются.

Система магнето с неподвижным магнитом.

В такой системе, как видно из её названия, в магнитном поле вращается не магнит, а якорь с обмотками (с двумя обмотками и конденсатором) причём якорь одновременно служит и катушкой зажигания и генератором — см. рисунок 3 а. А прерыватель тока, установленный на валу 5 якоря, вращается внутри обоймы 15, которая имеет выступы.

Магнето с неподвижным магнитом (подвижными обмотками):
1 — свеча зажигания, 2 — держатель щётки, 3 — разрядник, 4 — угольная щётка, 5 — вал якоря, 6 — коллектор высокого напряжения, 7 — вторичная обмотка, 8 — первичная обмотка, 9 — конденсатор, 10 — угольная щётка, 11 — прерыватель тока, 12 — пружинный контакт, 13 — крышка прерывателя, 14 — кнопка глушения мотора, 15 — обойма прерывателя, 16 — контакт молоточка, 17 — контакт наковаленки.

Прерыватель тока закрывается крышкой 13, на которой крепится пружинный контакт 12. Ну и ещё имеется кнопка 14, замыкающая контакт на массу, чтобы заглушить мотор. На рисунке 3 а видно, что первичная обмотка 8 одним концом соединяется с массой и подведена к наковаленке 17. А молоточек 16 и сам корпус вращающегося прерывателя тока соединяются с массой через угольную щётку 10.

Ну а конец вторичной обмотки 7 выводится к коллектору 6 высокого напряжения. А медное кольцо, залитое в карболитовом коллекторе, довольно надёжно изолируется по бокам с помощью высоких рёбер. Коллектрор у магнето для двухцилиндровых моторов так же служит и распределителем. От коллектора высоковольтный ток (через угольную щётку 4 и держатель щётки 2) по высоковольтному проводу поступает на свечу зажигания 1, а далее через массу возвращается в магнето.

Когда якорь начинает вращаться (например от привода кикстартера двигателя), то в магнитной системе магнето, показанной на рисунке 3 б (между полюсными башмаками) начинает появляться переменный магнитный поток. При этом силовые линии меняющегося магнитного потока начинают пересекать витка первичной и вторичной обмотки якоря и при этом начинают индуктировать в них эдектро-движущую силу, напряжением примерно т 20 до 40 вольт в первичной обмотке, а во вторичной обмотке примерно 1000 — 2000 вольт.

Но во вторичной обмотке из-за зазора между электродами свечи зажигания ток не проходит. И в этот момент контакты прерывателя 11 находятся в замкнутом состоянии, а через первичную обмотку проходит ток, который достигает максимального значения в момент, когда край железного сердечника якоря начинает отходить от полюсного башмака.

В это время контакты прерывателя 11 начинают размыкаться, при этом величина тока в первичной обмотки падает до нуля, а во вторичной обмотке индуктируется высоковольтный ток, который способствует проскакиванию искры между электродами свечи зажигания.

Ну а конденсатор 9, так же как и в выше описанном магнето и так же как в контактной батарейной системе зажигания (будет описана ниже) включают параллельно контактам прерывателя, предназначен для уменьшения искрения между контактами прерывателя. Также конденсатор предназначен для более быстрого исчезновения тока в первичной обмотке катушки, что способствует дополнительному увеличению напряжения во вторичной обмотке катушки зажигания и увеличивает мощность искры на свече.

Чтобы предотвратить пробой изоляции катушки зажигания, в случае соскакивания свечного колпачка со свечи, в магнето устанавливается разрядник 3, через который искра проскакивает на корпус (массу) магнето. В обойме прерывателя магнето делают всего один выступ (а медное кольцо сплошное — без разрыва), если мотор одноцилиндровый. Если же двигатель двухцилиндровый, то соответственно делают два выступа.

Недостатками магнето этого типа (магнето с вращающемся якорем и обмотками) являются наличие скользящих контактов, которые со временем изнашиваются от трения и меньшая надёжность вращающейся обмотки и конденсатора (неподвижные более надёжны).

Маховичное магнето .

Магнето этого типа показано на рисунке 4 и оно в прошлом веке широко использовалось на небольших малокубатурных моторах мопедов и мотоциклов (а также на некоторых мотороллерах). В последствии такие магнето стали делать как часть маховичного магдино, о котором я напишу ниже. Как видно на рисунке 4 у маховичного магнето магниты устанавливают в ободе маховика 1 двигателя. Маховик с расположенными в нём магнитами крепится на цапфе коленвала, а значит и вращается с точно таким же числом оборотов.

Маховичное магдино: 1 — маховик, 2 — основание магдино, 3 — пазы для сдвига основания и регулировки опережения зажигания, 4 — регулируемый контакт наковаленки, 5 — контргайка, 6 — молоточек.

А на закреплённом неподвижно основании 2 расположены три стальных сердечника с катушками. Одна катушка является катушкой зажигания, а две другие (бывают и больше) предназначены для вырабатывания тока для потребителей (освещения, сигнала и т.п.). Также на основании магдино расположен прерыватель тока, с регулируемым контактом наковаленки 4.

Контакт молоточка 6 размыкается с помощью вращающегося кулачка, закреплённого на ступице маховика. Ну а пазы 3 в основании служат для того, чтобы можно было открутив крепёжные винты, немного двигать основание вправо-влево, при регулировке момента зажигания.

При пуске двигателя мотоцикла (мопеда) с таким маховичным магдино нежелательно включать фару и другие потребители, так как от этого будет не такая мощная искра на свече и возможность лёгкого запуска уменьшится. Кстати, на некоторых мотоциклах устанавливалась аккумуляторная батарея, которая использовалась для стояночного света и переноски и на таких мотоциклах для возможности заряжать батарею, устанавливали простейшие выпрямители тока (даже селеновые, когда не было полупроводниковых диодов) и простейшие дроссели для ограничения тока.

Кстати, если же на мотоцикле установлен отдельный генератор постоянного тока, а магнето отдельно (как на моём Симсоне 425 S) то выпрямитель не требуется, а только лишь реле-регулятор тока.

При вращении магниты маховика проходят с большой скоростью мимо сердечника закреплённой неподвижно катушки зажигания и эта особенность (несмотря на простую конструкцию) при тщательном изготовлении позволяет сделать очень надёжную и безотказную систему зажигания. Принцип такой нажёжной конструкции магнето используют и сейчас на многих современных мопедах, скутерах, бензопилах, кроссовых мотоциклах, только с небольшими изменениями (усовершенствованиями), которые будут описаны позже.

Зажигание мотоцикла от магдино.

Маховичное магдино уже было показано выше на рисунке 4. Маховичное магдино с генератором переменного тока является упрощённым типом магдино. Они бывают с внутренней катушкой зажигания и с выносной катушкой. Описываемый мной чуть ниже генератор переменного тока с выносной катушкой зажигания тоже можно назвать магдино переменного тока, но как было сказано — катушка зажигания крепится отдельно.

Но также бывают и магдино постоянного тока, которые устанавливаются на привод от распределительного вала, а не от коленвала и соответственно обороты ротора у них в два раза меньше, а значит и мощность искры тоже. А вообще, все магнето работают по принципу, чем больше обороты, тем мощнее искра.

И поэтому некоторые производители делали конструкцию, в которой якорь генератора (или магнето) приводится во вращение с помощью дополнительной повышающей обороты шестерёнчатой передачи, расположенной внутри корпуса магдино. Также были конструкции прошлого века (на старых антикварных мотоциклах) у которых генератор был съёмный и крепился с корпусу магнето с помощью стальной стяжной ленты.

Магдино типа Бош: 1 — вал якоря, 2 — корпус, 3 — корпус генератора, 4 — магнитная пластина, 5 — регулятор напряжения, 6 — обойма прерывателя.

А например магдино Бош, устанавливаемое на старые мотоциклы БМВ и показанное на рисунке 5, имеет в своей конструкции несъёмный генератор 3 с реле регулятором 5 Г-образного типа, и встроенным магнето с вращающимся якорем. К корпусу 2, выполненному из алюминиевого сплава, крепятся с помощью винтов два постоянных магнита 4, имеющих прямоугольную форму (в виде пластин).

На мотоциклах, оборудованных такими магдино (как на одноцилиндровых, так и двухцилиндровых), все компоненты электрооборудования расположены в одном компактном приборе и защищены от внешних воздействий, и электропроводка довольно короткая и очень простая. Но основной недостаток этих магдино — это довольно скромная мощность генератора и соответственно очень маленькая мощность света в фаре. И поэтому они постепенно канули в лету, так же как и маломощные генераторы постоянного тока.

Ну а теперь мы переходим к более современным системам зажигания мотоциклов и другой мото-техники, работающих без дополнительного источника тока (аккумулятора).

Современная система зажигания без дополнительного источника тока — СDI.

Эта система, если быть точным, расшифровывается как Capacitor Discharge Igniton , что в переводе с английского означает система зажигания с разрядом от конденсатора. Такие системы устанавливаются почти на всех современных мопедах, скутерах, некоторых мотоциклах (кроссовых, эндуро), гидроциклах, снегоходах, ATV и даже на бензопилах и газонокосилках, где не нужен лишний вес и хлопоты от аккумулятора. И эта система гениально проста и довольно надёжна.

Конструкция этой системы показана на рисунке 6 и с виду похожа на описанные мной выше магдино, но принцип работы отличается, так как для разряда искры используется конденсатор и ещё кое какие детали, которые я опишу ниже. Так же как и в древних магдино, описанных мной выше, здесь тоже имеется намагниченный ротор и так же имеются несколько катушек, часть из которых работает на потребители (свет, сигнал …), а часть — точнее две штуки, работают на систему зажигания.

Одна из этих двух катушек вырабатывает электрический ток (примерно 160 вольт), когда мимо неё пробегает магнит вращающегося ротора. А вторая катушка играет роль управляющего датчика, создающего в нужный момент импульс разряда на свече (опять же когда на датчик набегает специальный выступ на роторе). Катушка датчика работает подобно , выдавая в нужный момент импульс (о системе зажигания с Холлом мы ещё поговорим ниже), но отличается от него по конструкции и внешнему виду.

Ротор закреплён на цапфе коленвала и когда мы начинаем вращать его киком, или электростартером, для запуска мотора, то при вращении коленвала и соответственно при вращении ротора, мимо выступающего сердечника катушки датчика проходит специальный выступ на магните ротора и в катушке появляется электромагнитный импульс, который проходит по проводам к тиристору (расположенному в блоке управления или в коммутаторе) и тут же отпирает его.

Чтобы лучше понять новичкам, роль тиристора — это роль выключателя, только в отличии от выключателя (или контактов прерывателя) тиристор это управляемый электротоком полупроводниковый прибор, в котором нет механических контактов, а значит нечему изнашиваться или подгорать.

При отпирании (включении) тиристора, электрический ток поступает на конденсатор (ещё на пути от катушки к конденсатору переменный ток выпрямляется диодом) и далее, накопленный в ёмкости конденсатора разряд, поступает на первичную обмотку катушки зажигания, ну а далее, благодаря рассмотренному выше явлению электромагнитной индукции, разряд многократно увеличивается во вторичной обмотке катушки зажигания до положенных 20 — 40 киловольт и проходя по высоковольтному проводу от катушки выстреливает между электродами свечи зажигания.

Как я отметил в скобочках выше, в схеме ещё имеется полупроводниковый диод, который выпрямляет переменный ток, образующийся в катушке маховичного генератора. Ведь когда вращается ротор, то мимо катушки поочерёдно проходят то юг то сервер магнита ротора и от этого ток попеременно меняет свою полярность, то есть ток переменный.

Рекомендуется к прочтению  Как устроена катушка зажигания автомобиля

А конденсатор в своей ёмкости способен накапливать заряд только от постоянного тока. И вот для того, чтобы выпрямить переменное напряжение в постоянное, способное накопиться в ёмкости конденсатора, между ним и катушкой устанавливают выпрямитель, то есть полупроводниковый диод. Всё это хорошо видно на электрической схеме, на рисунке 6. Там же показаны все детали этой системы зажигания, снятые с какого то скутера.

Как я упомянул выше, система СDI довольно проста и надёжна, но при множестве плюсов конечно же есть и некоторые минусы. А дело в том, что напруга на конденсаторе и соответственно и напряжение вторичного разряда заметно падает, если коленвал и ротор вращаются медленно (особенно при пуске) и от этого скорость прохождения магнита ротора мимо катушки небольшая.

И при малых оборотах или при запуске искрообразование становится нестабильным и от этого устойчивая работа мотора сбивается. А чтобы избавиться от этой проблемы, инженеры конечно же не стояли на месте и модифицировали эту систему, а как они это сделали читаем ниже (в разделе про DC-CDI), пропустив один раздел про контактную батарейную систему зажигания.

СИСТЕМЫ ЗАЖИГАНИЯ С ДОПОЛНИТЕЛЬНЫМ ИСТОЧНИКОМ ТОКА (с аккумулятором) .

Самая распространённая система на отечественных мотоциклах и древних иномарках — батарейная контактная система зажигания.

Эту систему наверное знает каждый, ведь её использовали на многих мотоциклах и автомобилях прошлого века, но всё ж таки было бы неправильным не описать её хоть немного, ведь именно с неё у меня много лет назад, да наверное у каждого начинающего мотоциклиста, происходило ознакомление с системами зажигания мотоцикла (и автомобиля) и выявление исчезнувшей искры.

Система зажигания батарейная, для мотоцикла с двухцилиндровым двигателем, с контактным прерывателем тока:
1 — батарея, 2 — замок зажигания, 3 — кнопка глушения двигателя, 4 — катушка зажигания, 5 — свечи зажигания, 6 — контактная пара (молоточек вверху и наковаленка внизу), 7 — конденсатор.

Такая система стояла почти на любом советском мотоцикле (ну разве, что кроме Минска, мотороллера Электрон и мопедов) и знают её многие, поэтому кому она не интересна, то просто проматываем колёсико мыши и читаем ниже о более современных системах зажигания.

В этой простейшей системе конечно же используется известный многим мотоциклистам механический прерыватель, подробно показанный в статье про регулировку зажигания (ссылка на статью чуть ниже), а так же его простая схема показана на рисунке 7.

Как видно из рисунка 7, к катушке зажигания 4 приходят два провода — один от плюса, другой от минуса. Тот что от минуса подключен к контактам прерывателя 6 (см. рис.7) один из которых подвижный (молоточек), а второй неподвижный (наковаленка).

К подвижному контакту (молоточку) подключен провод от катушки зажигания, а неподвижный контакт связан с массой. То есть по сути роль этих контактов в нужный момент соединять с массой минусовой провод катушки зажигания, думаю с этим понятно новичкам.

Так вот, когда выпуклая часть кулачка, закреплённого на коленвалу, опущена в низ и наковаленка и молоточек замкнуты между собой, то электрический ток протекает через первичную обмотку катушки зажигания и электрическое поле первичной обмотки намагничивает её сердечник.

Но стоит начать прокручивать коленвал и кулачок провернувшись своей выпуклой частью приподнимет молоточек над наковаленкой, тем самым размыкая их и прерывая ток в первичной обмотке катушки зажигания. И в этот момент сердечник катушки зажигания размагнитится, а как я описывал выше, согласно явлению электромагнитной индукции (исчезновение магнита в катушке создаёт в её обмотках импульс напряжения) во вторичной обмотке катушки возникают примерно 10 — 20 тысяч вольт, которые проходя по высоковольтному проводу и образуют искру между электродами свечи зажигания.

Ну а так как явление магнитной индукции сердечника катушки сохраняется несколько миллисекунд, то и время горения искры на электродах свечи зажигания практически такое же. Катушка зажигания может быть одна, если мотор одноцилиндровый (как на ИЖ-планета), или две катушки, если мотор двухцилиндровый (как на Явах или на К-750).

Так же катушка может быть одна, но иметь два высоковольтных вывода (как на наших тяжёлых мотоциклах Урал, Днепр, или на автомобиле Ока). Но принцип работы одинаковый, лишь количество высоковольтных выводов разное (например на более современных ВАЗах применяют четырёхвыводные катушки, их же ставят и на мотоциклы).

Ну а роль конденсатора 7 в такой системе совсем другая, в отличии от системы СDI : при размыкании контактов прерывателя происходит искрение между ними, так как ток постоянно стремится пробить воздушный промежуток между контактами. Ну а конденсатор, подсоединённый параллельно прерывателю, частично поглощает искрение, тем самым увеличивая ресурс контактов прерывателя.

Казалось бы, как всё в этой системе просто и хорошо, да и искра по длительности разряда превосходит даже более современные конденсаторные системы зажигания, которые я опишу ниже (одна из них уже описана выше). Но всё же, как говорится в известной пословице — «простота хуже воровства» и эта простота имеет кучу недостатков. Вспомните вечно подгорающие контакты прерывателя, которые часто приходилось чистить и регулировать зазор между ними, к тому же сейчас контакты прерывателя подвальные «фирмы» начали «лепить» не из вольфрама, а из какого то го…на и их хватает всего на пару сотен километров.

Кроме этого постепенно разбалтывающиеся грузики и растягивающие пружинки автомата опережения и корректировка этого вечно сбивающегося опережения зажигания. А его ещё нужно уметь правильно настроить (кстати о настройке зажигания мотоцикла ). Для новичков, эти вроде бы простые нюансы, оказывались не такими уж и простыми и часто многие из них, сидя на бордюрном камне рядом с заглохшим мотоциклом — чесали «репу» и бормотали вечный вопрос — куда же пропала искра!

Ну и ещё один существенный минус, который понял я и поняли многие мотоциклисты. Это то, что в контактной батарейной системе зажигания мощность искры существенно ниже (примерно от 10 до 20 киловольт) против более современных транзисторных систем, у которых мощность разряда на свече примерно в два раза выше (от 20 до 40 киловольт). А этот нюанс становится очень важным при запуске двигателя в холодную погоду, либо при подкопчённых электродах свечи, при подсевшей батарее и т.д. и т.п.

Я понял эти нюансы, когда приходилось мучиться с запуском мотоцикла в холодную погоду. Но стоило поменять контактную систему на более современную электронную бесконтактную, как о трудном пуске можно было забыть как о страшном сне. Ну а как я это сделал на , и вообще как сделать своими руками бесконтактную систему зажигания на вашем мотоцикле, мной написано в других статьях на сайте, ссылки на которые ниже в тексте, в разделе этой статьи про транзисторное зажигание.

Более современная и совершенная система зажигания DC — СDI с изменяемым углом.

В этой системе так же используется разряд конденсатора, но здесь в схему подключена батарея и используется постоянное напряжение аккумулятора, который стабильно обеспечивает систему этим напряжением, даже на самых малых оборотах (то есть в независимости от оборотов коленвала и ротора). В такой системе ёмкость конденсатора заряжается не от катушки генератора (которая на малых оборотах выдаёт нестабильную напругу), а от батареи.

Более совершенное конденсаторное зажигание мотоцикла DC-CDI с изменяемым углом.

Конечно же аккумулятор не делает систему дешевле и независимой, но зато двигатель с такой системой стабильно работает на любых оборотах (ведь искра на свече стабильна даже на самых малых оборотах) и конечно же существенно улучшается его запуск (что важно в холодную погоду).

Как было сказано выше, такая система зажигания мотоцикла становится дороже из-за батареи, но и не только из-за неё. В системе ещё присутствует специальный электронный модуль (инвертор) который поднимает напругу с 12 — 14 вольт существенно выше (примерно до 300 вольт!) и таким образом заряд ёмкости конденсатора становится более полноценным, а значит и мощность искры на свече выше. Как это работает?

Взгляните на рисунок 8: поступающий с аккумуляторной батареи постоянный ток преобразуется в переменный ток и тут же увеличивается в инверторе до 300 вольт, затем проходя через стоящий за инвертором диод опять выпрямляется в постоянный ток и только после этого поступает и заряжает ёмкость конденсатора. В итоге, на первичную обмотку катушки зажигания 9 поступает существенно больший ток, чем на батарее.

А чем больше ток, поступающий на катушку зажигания, тем меньше в сечении (и по размерам) можно сделать сердечник катушки и саму катушку. Катушка зажигания получается миниатюрной, что позволяет разместить её в свечном колпачке и избавиться от вечно проблемного высоковольтного провода. Катушки зажигания в свечных колпачках можно встретить не только на самых современных спортивных мотоциклах (спортбайках), но и на снегоходах, гидроциклах, и на всех современных спортивных автомобилях (и не только спортивных).

Но и это ещё не всё — на самых современных системах зажигания DC — СDI дополняют ещё электронной регулировкой угла опережения зажигания, в зависимости от оборотов коленвала. А эта электронная фишка обеспечивает прирост мощности современного оборотистого мотора как минимум на 10 процентов. Ведь ни для кого не секрет, что самые современные моторы становятся всё более оборотистыми (обороты доходят до 17 — 20 тысяч).

А с повышением оборотов коленвала, время, которое необходимо для полноценного сгорания рабочей смеси, становится всё короче. А как известно, рабочая смесь горит не так уж быстро (примерно от 30 до 40 м/сек.) и не врывается моментально. И поэтому на повышенных оборотах рабочую смесь нужно поджигать чуть ранее, то есть автоматически немного изменять , при увеличением оборотов.

И как известно для этого на многих машинах и мотоциклах в устанавливали механический центробежный регулятор с пружинами и грузиками, которые при повышении оборотов (за счёт центробежной силы) раздвигали механическое устройство, меняющее угол опережения зажигания.

Но при повышении максимальных оборотов, на современных оборотистых двигателях, механический регулятор становился всё более ненадёжным, ведь когда обороты коленвала доходят до 17 тысяч, обороты распредвала хоть и в два раза меньше, но всё равно довольно высоки и детали механического автомата опережения начинали довольно быстро изнашиваться и разбалтываться.

Решить эту проблему помогла электроника, в которой нет механических деталей, а значит и нечему изнашиваться и разбалтываться. Далее мне следует написать несколько слов, как работает электронная система опережения зажигания мотоцикла и другой современной мото-техники с системой DC — СDI с изменяемым углом .

Система зажигания DC — СDI — принцип работы изменения угла опережения зажигания .

Основа системы зажигания — это блок управления. В нём имеется микросхема, считывающая обороты коленчатого вала, исходя из формы сигнала, поступающих с управляющего датчика. А форма сигнала зависит от оборотов коленвала и соответственно от скорости вращения закреплённого на нём ротора с магнитом, то есть от того, с какой скоростью проходит магнит относительно сердечника катушки датчика.

При считывании оборотов, микросхема выбирает какой нужен угол опережения зажигания, который соответствует данным оборотам. И с нужным опережением в нужный момент микросхема открывает тиристор. Ну а что происходит далее, после открытия тиристора, и как формируется искра на свече зажигания я уже написал выше — принцип один и тот же (что в обычной CDI, что в DC-CDI с изменяемым углом).

Минусы конденсаторных систем зажигания DC-CDI от CDI.

Кстати я чуть было не забыл упомянуть о минусах конденсаторных систем зажигания DC-CDI и CDI. Так вот, обе системы вырабатывают искру на свече, которая имеет очень короткое время разряда (всего примерно от 0,1 до 0,3 миллисекунды). Это обусловлено тем, что в обоих системах стоит и участвует в образовании искры конденсатор, не способный на выдачу более длительного по времени разряда.

А батарейная система зажигания (контактная и более совершенная TCI, о которой чуть позже) способна выдать искру с более длительным по времени разрядом — примерно от 1 до 1,5 миллисекунд, что более благоприятно для хорошего воспламенения рабочей смеси в камере сгорания.

То есть искру на свече создаёт не короткий разряд энергии конденсатора, а накопленная во вторичной обмотке катушки зажигания более длинная и солидная порция разряда, полученного от полезного явления электромагнитной индукции, описанной в самом начале статьи. Разница искрового разряда на свече зажигания хорошо видна на рисунке 8а.

И этот существенный плюс батарейных систем зажигания (контактная и более совершенная TCI) позволяет с меньшими требованиями , или иной техники.

Выше описанные системы зажигания появились на мото-технике и автомобилях ещё в прошлом веке. Но совершенствование блоков управления зажиганием (микрокомпьютеров) не стояло на месте и недавно появились ещё более продвинутые цифровые системы зажигания мотоцикла и другой мото-техники. Но о цифровой системе зажигания я напишу чуть позже, так как есть ещё и другие системы (транзисторные).

Транзисторное батарейное зажигание мотоцикла и др. мото-техники.

Эта система, сокращённо именуемая TCI, что расшифровывается как Transistor Controlled Ignition, а в переводе с английского звучит как «зажигание контролируемое транзистором». В этой системе, вместо изнашиваемой со временем механической конструкции устанавливают электромагнитный датчик, представляющий из себя всё ту же катушку, намотанную на магнитном сердечнике.

Что бы смодулировать сигнал в этой катушке индуктивного датчика, на роторе, закреплённом на коленвалу, устанавливают круглую стальную пластину -модулятор (смотрите рисунок 9) которая с одной стороны имеет выступ. И при вращении коленвала двигателя и соответственно при вращении пластины модулятора 1, когда выступ подходит к выступающему магнитному сердечнику катушки индуктивного датчика 2, появляется сигнал.

Кстати количество выступов на пластине модулятора зависит от количества цилиндров двигателя (сколько цилиндров, столько и выступов на пластине). Но на современных цифровых системах количество выступов на пластинке молулятора может быть больше, чем количество цилиндров мотора, но об этом я напишу в разделе о цифровых системах ниже. Катушки тоже могут стоять две, если цилиндра на двигателе два (если же катушка двухвыводная, то она одна на два цилиндра).

Ну и конечно же датчик и пластину модулятора (с выступом) закрепляют в таком положении, когда поршень чуть не доходит до ВМТ, то есть в тот самый нужный момент воспламенения рабочей смеси в камере сгорания. Как и за счёт чего появляется команда (импульс) для возникновения искры на свече мы разобрали выше. Теперь рассмотрим основные компоненты транзисторной системы зажигания мотоцикла, или иной мото-техники.

Основные исполнители, участвующие в возникновении искры на свече зажигания в этой системе — это транзисторы и всё та же катушка зажигания. Как они работают в этой системе рассмотрим ниже.

При повороте ключа зажигания, напряжение от батареи (или от генератора, когда мотор завёлся) и через открытый силовой транзистор поступает на первичную обмотку катушки зажигания, от чего её сердечник намагничивается (за счёт всё того же явления электромагнитной индукции).

А когда при вращении коленвала выступ на пластине модулятора подходит к датчику и он даёт команду, что подошёл момент для искры на свече, то электрический импульс поступает на базу (управляющий электрод) управляющего транзистора и он мгновенно открывается. В этот момент электрический ток пойдёт на массу уже через него, а силовой транзистор наоборот закроется, то есть его база уже без тока.

А значит в этот момент и катушка зажигания тоже резко обесточится (см. схему на рисунке) и от этого её сердечник начнёт размагничиваться, во вторичной обмотке появится высоковольтное напряжение, которое тут же пойдёт через высоковольтный провод на электроды свечи зажигания — произойдёт разряд (искра).

Ну а далее управляющий транзистор возвращается в закрытое состояние, до того момента, пока он вновь не получит сигнал от датчика, и силовой транзистор снова откроется и зарядит катушку для следующего разряда. То, что я описал выше конечно же написано в упрощённом варианте, но надеюсь он понятен для новичков.

На многих современных скутерах тоже устанавливают подобную систему зажигания, в которой тоже имеется транзистор, помещённый в коммутатор 2, отвечающий за прерывание тока в нужный момент. И такую схему я показал на рисунке справа.

Кстати, по подобному принципу работает и всем известная система зажигания с , показанным на фото справа, и которая устанавливается на наших отечественных переднеприводных Вазах (ВАЗ 2108, 09 и другие модели — ссылка ниже).

В ней тоже для прерывания тока используется транзистор, помещённый в коммутаторе, только в ней вместо индуктивного датчика используется датчик с эффектом Холла (см. фото справа).

Ну а кому интересно как такую систему своими руками установить на наши отечественные мотоциклы, то переходим по ссылкам ниже и читаем:

Конечно же устранить саму неисправность намного сложнее, чем её выявить с помощью сканера, но при определённых навыках вполне возможно (об этом читаем в некоторых статьях у меня на сайте … ну например ). Чаще всего неисправность возникает при выходе из строя какого то датчика (или от окисления его клемм), а как проверить датчики с помощью обычного мультиметра желающие .

И ещё: параметры работы современного двигателя считываются с помощью различных способов. Например на многих автомобильных двигателях параметры считываются с датчиков коленвала и распредвала. А на некоторых современных мотоциклах параметры считываются только индуктивным датчиком, это когда пластина модулятора имеет несколько выступов (их количество больше, чем количество цилиндров мотора — см. фото В чуть выше).

И по скорости перемещения некоторых выступов на модуляторе, процессор ЭБУ считывает количество оборотов коленчатого вала, а по скорости перемещения других выступов (их количество равно количеству цилиндров мотора) процессор определяет на свечу какого цилиндра в нужный момент подать высоковольтный разряд.

Более современные и совершенные системы зажигания оснащают датчиком положения дроссельной заслонки Throttle Position Sensor, сокращённо TPS (см. фото), с которого процессор считывает информацию о нагрузке на двигатель. А ещё на более совершенных системах даже считывается с какой скоростью вы крутите ручку газа, то есть с какой скоростью открывается дроссельная заслонка.

Эта информация полезна для того, чтобы исключить . Ведь когда мы слишком резко дёргаем ручку газа, мы требуем от мотора резкой динамики, вызывающей детонацию (от взрывного грения топлива). И в таких случаях датчик положения дроссельной заслонки передаёт процессору точную скорость открытия заслонки, а процессор в свою очередь сравнивает эту информацию с записью в ПЗУ и тут же оценивает, что ситуация близка к критической.

А чтобы её исключить, моментально откорректирует угол опережения, то есть сдвинет его чуть попозже. И от этого взрывного горения не будет и повреждения поршня от детонации не произойдёт. Кстати на некоторых двигателях ещё устанавливают , который тоже помогает избежать её.

Кстати, кроме постоянных запоминающих устройств (ПЗУ) в которых изменять полученные и записанные данные невозможно, некоторые мотоциклетные фирмы, например такие известные как Харлей Девидсон, Бьюл и Дукати, используют в системах зажигания своих мотоциклов системы с так называемой гибкой памятью, которую ещё называют ОЗУ, что расшифровывается Оперативное Запоминающее Устройство.

Это запоминающее устройство прошивается (программируется) с помощью специального электронного блока.

Кстати, сейчас многие конторы занимаются перепрошивкой блоков (чип тюнингом) за определённую плату и подробнее об этом . Но лишь не многим спецам удаётся существенно улучшить заводские настройки зажигания.

Ведь до установки мотора на серийный мотоцикл, двигатель испытывается на специальном заводском стенде, при разных режимах (разных оборотах и нагрузках) и после этого наиболее оптимальное значение угла опережения зажигания фиксируется инженерами и далее записывается в ПЗУ, или ОЗУ.

СИСТЕМЫ ЗАЖИГАНИЯ МОТОЦИКЛА — ТАК ЧТО ЖЕ ЛУЧШЕ. выводы.

Конечно же у каждой системы зажигания имеются как плюсы, так и минусы. Батарейные системы зажигания, устанавливаемые на мото-технику, имеют практически тот же главный недостаток, что и у системы DC-CDI когда надёжность запуска двигателя зависит от состояния (степени заряда) источника постоянного тока — батареи.

И если аккумулятор не свежий или подсевший, то при пониженном напряжении блок управления может отказать в работе, добавим к этому ещё более пониженное напряжение при пуске из-за потребления его электро-стартером, а ведь на самых современных мотоциклах и кикстартера то нет и возможности запуска в экономном режиме киком, (без применения электро-стартера) нет.

И батарейное зажигание уже рассматривается как неперспективное, особенно на спортивной мототехнике. Ведь в настоящее время общеизвестное стремление инженеров мотозаводов к гонке мощностей моторов с помощью увеличения оборотов становится проблематичным с батарейными системами зажигания.

И время накопления заряда катушкой зажигания с помощью индукции становится слишком растянутым. Ведь несложно подсчитать, что до десяти тысяч оборотов батарейная система зажигания ещё будет справляться со своими задачами, но если поднять обороты повыше, то полного заряда индукции будет не хватать по времени на больших оборотах и мощность искры существенно снизится, что приведёт к снижению мощности и к пропуску к воспламенении.

Решить выше описанные проблемы на больших оборотах опять же возможно применив систему зажигания DC-CDI, описанную выше. Ведь у неё очень маленькое время (микросекунды) зарядки ёмкости конденсатора, а это способность нормально обеспечить разряд на свече даже при огромных максимальных оборотах коленвала — даже при 20 тысяч оборотов в минуту!

Конечно же (как было описано ранее) у системы DC-CDI длительность разряда ощутимо короче (0,1 — 0,3 миллисекунды), чем у батарейной системы (1 — 1,5 миллисекунды). Но производители современной мото-техники решили и эту проблему, достигнув надёжности воспламенения коротким разрядом за счёт более усовершенствованных систем впуска (например тот же ) и усовершенствованных систем питания (современные ).

Ну и конечно же последним усовершенствованием системы DC-CDI на современной мото-технике было внедрение в блоки управления зажиганием интеллекта (цифровых систем зажигания с ПЗУ и ОЗУ), которые нисколько не хуже, чем у цифровых батарейных систем.

Вот вроде бы и всё, если что то вспомню ещё, касающегося систем зажигания мотоцикла и другой мото-техники, то обязательно допишу, успехов всем.

Что такое cdi на мотоцикле. CDI зажигание Дэшке. Настройка угла опережения зажигания

Современный автомобиль трудно представить без зажигания. Основные преимущества, которые дает система электронного зажигания общеизвестны, они следующие:
более полное сгорание топлива и связанное с этим повышение мощности и экономичности;
снижение токсичности отработавших газов;
облегчение холодного пуска;
увеличение ресурса свечей зажигания;
снижение энергопотребления;
возможность микропроцессорного управления зажиганием.
Но всё это в основном относится к системе CDI
На данный момент, в автомобильной промышленности практически отсутствуют системы зажигания, основанные на накоплении энергии в конденсаторе: CDI (Capacitor Discharge Ignition) — она же тиристорная (конденсаторная) (кроме 2-х тактных импортных двигателей). А системы зажигания основанные на накоплении энергии в индуктивности: ICI (ignition coil inductor) пережили момент перехода с контактов на коммутаторы, где контакты прерывателя были банально заменены транзисторным ключом и датчиком Холла не претерпев принципиальных изменений (пример зажигания в ВАЗ 2101…07 и в интегральные системы зажигания ВАЗ 2108…2115 и далее). Основная причина доминирующего распространения систем зажигания ICI — это возможность интегрального исполнения, что влечёт удешевление производства, упрощение сборки и монтажа, за которое расплачивается конечный пользователь.
При этой, так сказать, системы ICI все недостатки, основным из которых является относительно низкая скорость перемагничивания сердечника и как следствие резкий рост тока первичной обмотки с ростом оборотов двигателя, и потеря энергии. Что приводит к тому, что с ростом оборотов, ухудшается воспламенение смеси, как следствие сбивается фаза начального момента роста давления вспышки, ухудшается экономичность.

Частичное, но далеко не лучшее решение этой проблемы, является применение сдвоенных и счетверённых катушек зажигания (т.н.) этим самым производитель распределил нагрузку по частоте перемагничивания с одной катушки зажигания на две или четыре, тем самым, снижая частоту перемагничивания сердечника для одной катушки зажигания.
Хочу заметить, что на машинах с схемой зажигания (ВАЗ 2101…2107), где искра формируется за счет прерывания тока в достаточно высокоомной катушке механическим прерывателем, что замена на электронный коммутатор от или ему подобный в автомобилях с высокоомной катушкой не дает ничего, кроме снижения токовой нагрузки на контакт.
Дело в том, что RL-параметры катушки должны удовлетворять противоречивым требованиям. Во-первых, активное сопротивление R должно ограничивать ток на уровне, достаточном для накопления необходимого количества энергии при пуске, когда напряжение аккумулятора может упасть в 1,5 раза. С другой стороны, слишком большой ток приводит к преждевременному выходу из строя контактной группы, поэтому ограничен вариатором или длительностью импульса накачки в. Во-вторых, для увеличения количества запасенной энергии необходимо увеличивать индуктивность катушки. При этом с ростом оборотов сердечник не успевает перемагнититься (о чём писалось выше). Как следствие вторичное напряжение в катушке не успевает достигнуть номинального значения, и энергия искры, пропорциональная квадрату тока, резко снижается на высоких (более ~3000) оборотах двигателя.
Наиболее полно преимущества электронной системы зажигания проявляются в конденсаторной системе зажигания с накоплением энергии в ёмкости, а не в сердечнике. Один из вариантов конденсаторной системы зажигания и описан в данной статье. Подобные устройства отвечают большинству требований, предъявляемых к системе зажигания. Однако их массовому распространению препятствует наличие в схеме высоковольтного импульсного трансформатора, изготовление которого представляет известную сложность (об этом ниже).
В данной схеме высоковольтный конденсатор заряжается от DC/DC преобразователя, на транзисторах П210, при поступлении сигнала управления тиристор подключает заряженный конденсатор к первичной обмотке катушки зажигания, при этом DC-DC работающий в режиме блокинг-генератора останавливается. Катушка зажигания используется только как трансформатор (ударный LC контур).
Обычно напряжение на первичной обмотке нормируется на уровне 450…500В. Наличие высокочастотного генератора и стабилизация напряжения делает величину запасаемой энергии практически независимой от напряжения аккумулятора и частоты вращения вала. Такая структура получается гораздо более экономичной, чем при накоплении энергии в индуктивности, так как ток через катушку зажигания течет только в момент искрообразования. Применение 2-х тактного автогенераторного преобразователя позволило поднять КПД до 0,85. Нижеприведенная схема имеет свои преимущества и недостатки. К достоинствам надо отнести:
нормирование вторичного напряжения, независимо от частоты вращения коленчатого вала в рабочем диапазоне оборотов.
простота конструкции и как следствие – высокая надежность;
высокий КПД.
К недостаткам:
сильный нагрев и, как следствие, — нежелательно размещать в месте моторного отсека. Самое, на мой взгляд, удачное место расположения – бампер автомобиля.
По сравнению с системой зажигания ICI с накоплением энергии в катушке зажигания, конденсаторная (CDI) имеет следующие преимущества:
высокая скорость нарастания высоковольтного напряжения;
и достаточное (0,8мс) время горения дугового разряда и, как следствие, — роста давления вспышки топливной смеси в цилиндре, из-за этого повышается стойкость двигателя к детонации;
энергия вторичной цепи выше, т.к. нормирована по времени горения дуги от момента зажигания (МЗ) до верхней мёртвой точки (ВМТ) и не ограничена сердечником катушки. Как следствие – лучшая воспламеняемость топлива;
более полное сгорание топлива;
лучшую самоочистку свечей зажигания, камер сгорания;
отсутствие калильного зажигания.
меньший эрозионный износ контактов свечей зажигания, распределителя. Как следствие — больший срок службы;
уверенный запуск в любую погоду, даже на подсевшей АКБ. Блок начинает уверенно работать от 7 В;
мягкая работа двигателя, по причине только одного фронта горения.

Рекомендуется к прочтению  Как установить зажигание на

Следует тщательно подойти к технологии изготовления трансформатора, т.к. 99% неудачных попыток повторения похожих и этой схемы были связаны именно с неправильной намоткой трансформатора, монтажа и несоблюдением правил подключения нагрузок.
Для трансформатора применяется кольцо магнитной проницаемостью ч=2000, сечением >=1,5см 2 (например, неплохие результаты показал: «сердечник М2000НМ1-36 45х28х12»).

Намоточные данные:

Технология сборки:
Обмотка накладывается виток к витку по свеже-пропитанной эпоксидной смолой прокладке.
После окончания слоя или обмотки в одном слое — обмотка покрывается эпоксидной смолой до заполнения межвитковых пустот.
Обмотка закрывается прокладкой по свежей эпоксидной смоле с выдавливанием избытка. (из-за отсутствия вакуумной пропитки)
Так же следует обратить внимание на заделку выводов:
на одевается фторопластовая трубка и фиксируется капроновой ниткой. На повышающей обмотке выводы гибкие, выполненные проводом: МГТФ-0,2…0,35.
После пропитки и изоляции первого ряда (обмотки 1-2-3, 4-5-6) по всему кольцу наматывается повышающая обмотка (7-8) послойно, виток к витку. , оголение слоёв, «барашки» — не допускаются.
От качества изготовления трансформатора практически зависти надёжность и долговечность работы блока.
Расположение обмоток показано на рисунке 3.

Сборка электронного блока
Для лучшего теплоотвода блок рекомендуется собирать в дюралевом оребреном корпусе, приблизительный размер – 120 x 100 x 60 мм, толщина материала – 4. 5 мм.
На стенку корпуса через изоляционную теплопроводную прокладку ставятся транзисторы П210.
Монтаж выполняется навесным монтажом с учетом правил монтажа высоковольтных, импульсных устройств.
Плату управления допустимо выполнять на печатной либо на макетной плате.
Готовое устройство налаживания не требует, необходимо лишь уточнить включение обмоток 1, 3 в базовой цепи транзисторов, и если генератор не запускается – поменять местами.
Конденсатор, установленный на трамблёре при использовании CDI отключают.

Детали
Практика показала, что попытка заменить транзисторы П210 на современные кремниевые приводит к значительному усложнению электрической схемы (см. 2 нижние схемы на КТ819 и TL494), необходимостью тщательной настройки, которую после одного — двух лет эксплуатации в тяжелых режимах (нагрев, вибрация) приходится выполнять повторно.
Личная практика с 1968 года показала, что применение транзисторов П210 позволяет забыть об электронном блоке на 5. 10 лет, а применение высококачественных компонентов (особенно накопительного конденсатора (МБГЧ) с долго нестареющим диэлектриком) и аккуратное изготовление трансформатора – и на более долгий срок.

1969-2006 Все права на это схемное решение принадлежат В.В.Алексееву. При перепечатке ссылка обязательна.
Задать вопрос можно по адресу, указанному в правом нижнем углу.

Зажигание CDI — особая электронная система, которая была прозвана конденсаторным зажиганием. Поскольку коммутационные функции в узле выполняет тиристор, то такую систему также нередко называют тиристорной.

История создания

Принцип работы данной системы строится на использовании разряда конденсатора. В отличие от контактной системы, в зажигании CDI не используется принцип прерывания. Несмотря на это, контактная электроника обладает конденсатором, основная задача которого — устранение помех и увеличение интенсивности образования искр на контактах.

Отдельные элементы системы зажигания CDI предназначаются для накопления электроэнергии. Впервые такие устройства были созданы более пятидесяти лет назад. В 70-х годах двигатели роторно-поршневого типа стали комплектоваться мощными конденсаторами и устанавливаться на транспортные средства. Такой тип зажигания во многом схож с системами накопления электроэнергии, но при этом обладает и своими особенностями.

Как работает зажигание CDI?

Принцип работы системы строится на использовании постоянного тока, неспособного преодолевать первичную обмотку катушки. К катушке подключён заряженный конденсатор, в котором и накапливается весь постоянный ток. В большинстве случаев в подобной электронной схеме довольно высокое напряжение, достигающее нескольких сотен Вольт.

Конструкция

Электронное зажигание CDI состоит из различных деталей, среди которых обязательно имеется преобразователь напряжения, действие которого направлено на зарядку накопительных конденсаторов, сами накопительные конденсаторы, электроключ и катушка. В качестве электроключа могут использоваться как транзисторы, так и тиристоры.

Недостатки системы зажигания конденсаторным разрядом

Устанавливаемое на автомобили и скутеры зажигание CDI обладает несколькими недостатками. К примеру, создатели слишком усложнили его конструкцию. Вторым минусом можно назвать короткий по длительности уровень импульса.

Достоинства системы CDI

Конденсаторное зажигание обладает и своими преимуществами, в числе которых — крутой фронт высоковольтных импульсов. Данная характеристика особенно важна в тех случаях, когда проводится установка CDI зажигания на «ИЖ» и прочие марки отечественных мотоциклов. Свечи такого транспорта зачастую заливаются большим количеством топлива из-за неправильно настроенных карбюраторов.

Для функционирования тиристорного зажигания не требуется использования дополнительных источников, генерирующих ток. Такие источники, к примеру аккумуляторная батарея, требуются только для завода мотоцикла при помощи кик-стартёра или электростартёра.

Система зажигания CDI пользуется немалой популярностью и зачастую устанавливается на скутеры, бензопилы и мотоциклы иностранных брендов. Для отечественного мотопрома её почти не использовали. Несмотря на это, можно встретить зажигание CDI на «Яве», автомобилях марок ГАЗ и ЗИЛ.

Принцип работы электронного зажигания

Диагностика системы зажигания CDI очень простая, как и принцип её работы. Состоит она из нескольких основных деталей:

  • Выпрямительный диод.
  • Заряжаемый конденсатор.
  • Катушка зажигания.
  • Коммутирующий тиристор.

Схема системы может варьироваться. Принцип работы строится на зарядке через выпрямительный диод конденсатора и его последующем разряде на повышающий трансформатор посредством тиристора. На выходе трансформатора образуется напряжение в несколько килоВольт, что приводит к тому, что между электродами свечи зажигания пробивает воздушное пространство.

Весь механизм, установленный на двигателе, заставить функционировать на практике несколько сложнее. Двухкатушечная конструкция зажигания CDI — классическая схема, которая впервые была использована на мопедах «Бабетта». Одна из катушек — низковольтная — отвечает за управление тиристором, вторая, высоковольтная, является заряжающей. При помощи одного провода обе катушки подключаются на массу. Ко входу 1 подводится выход заряжающей катушки, ко входу 2 — выход датчика тиристора. Свечи зажигания подключаются к выходу 3.

Искра современными системами подаётся при достижении порядка 80 вольт на входе 1, в то время как оптимальным напряжением считается 250 вольт.

Разновидности схемы CDI

В качестве датчиков тиристорного зажигания может использоваться датчик Холла, катушка или оптрон. К примеру, в используется схема CDI с минимальным количеством элементов: открытие тиристора в ней осуществляется снимаемой с заряжающейся катушки второй полуволной напряжения, в то время как первая полуволна заряжает конденсатор через диод.

Зажигание с прерывателем, установленное на двигателе, не комплектуется катушкой, которую можно было бы использовать в качестве заряжающей. В большинстве случаев на таких моторах устанавливают повышающие трансформаторы, которые поднимают до необходимого уровня напряжение низковольтной катушки.

Авиамодельные двигатели не комплектуются магнитом-ротором, поскольку требуется максимальная экономия как габаритов, так и веса агрегата. Нередко на вал двигателя крепят небольшой магнит, рядом с которым размещают датчик Холла. Преобразователь напряжения, повышающий 3-9 В батарейки до 250 В, заряжает конденсатор.

Снятие обеих полуволн с катушки возможно только при использовании диодного моста вместо диода. Соответственно, это позволит увеличить ёмкость конденсатора, что приведёт к усилению искры.

Настройка угла опережения зажигания

Настройка зажигания осуществляется с целью получения в определённый момент времени искры. В случае с неподвижными катушками статора магнит-ротор проворачивается в необходимое положение относительно цапфы коленвала. Шпоночные пазы перепиливаются в тех схемах, где ротор крепится к шпонке.

В системах с датчиками корректируется их положение.

Угол опережения зажигания приводится в справочных данных о двигателе. Самым точным способом определения УОЗ является использование Искрообразование происходит в определённом положении ротора, которое отмечается на статоре и роторе. К высоковольтному проводу катушки зажигания крепится провод с зажимом от включённого стробоскопа. После этого заводится двигатель, и метки подсвечиваются стробоскопом. Положение датчика меняется до тех пор, пока все метки не совпадут друг с другом.

Неисправности системы

Катушки системы зажигания CDI крайне редко выходят из строя, несмотря на расхожее мнение. Основные неполадки связаны со сгоранием обмоток, повреждением корпуса либо внутренними обрывами и замыканиями проводов.

Единственная возможность вывести катушку из строя — запустить двигатель без подключения к нему массы. В таком случае пусковой ток проходит на стартер через катушку, которая не выдерживает и лопается.

Диагностика системы зажигания

Проверка исправности системы CDI — довольно простая процедура, с которой может справиться каждый авто- или мотовладелец. Вся процедура диагностики состоит из замера напряжения подаваемого на катушку питания, проверки массы, подведённой к двигателю, катушке и коммутатору, и проверки целостности проводки, подводящей к потребителям системы ток.

Появление искры на свече двигателя напрямую зависит от того, поступает ли на катушку с коммутатора питание или нет. Ни один электрический потребитель не сможет работать без должного питания. Проверка в зависимости от полученного результата либо продолжается, либо заканчивается.

Итоги

  1. Отсутствие искры при поступающем на катушку питании требует цепи и массы.
  2. Если высоковольтная цепь и масса полностью исправны, то проблемы, вероятнее всего, с самой катушкой.
  3. При отсутствии напряжения на клеммах катушки проводятся его замеры на коммутаторе.
  4. При наличии на клеммах коммутатора напряжения и его отсутствии на клеммах катушки причина, вероятнее всего, в том, что на катушке отсутствует масса либо провод, объединяющий катушку и коммутатор, оборван — обрыв необходимо отыскать и устранить.
  5. Отсутствие напряжения на коммутаторе говорит о самого коммутатора либо индукционного датчика генератора.

Методика проверки катушки системы зажигания CDI может применяться не только для мототранспорта, но и для любых других транспортных средств. Процесс диагностики несложен и заключается в пошаговой проверке всех деталей системы зажигания с определением конкретных причин неполадок. Отыскать их довольно просто при наличии необходимых знаний о строении и принципе работы зажигания CDI.

Проблема с дизельным двигателем CDI.

Частые проблемы с двигателем и их причины.

1) Двигатель не развивает полной мощности. Нет тяги, стрелка тахометра не превышает 3000 обмин.

Вероятнее всего двигатель перешел в аварийный режим. Отключается турбина. Нет тяги.

Нужно в первую очередь сделать компютерную диагностику и определиться, в каком направлении идти дальше.

Если диагностику сделать нет возможности, или она не показывает ошибки — стоит проверить турбину на предмет работоспособности и форсунки «по обратнму сливу».

Турбину проверить проще всего так: пережмите пальцами рук резиновый патрубок который идет от турбины к двигателю, так, как проверяют давление в велосипедном колесе, в это время другой человек пусть нажмет на педаль акселератора до упора на 3-4 секунды. Если турбина в хорошем состоянии вы не удержите патрубок в сжатом состоянии. А вот если патрубок не расширяется от давления или расширяется слабо и его можно удержать в полусжатом состоянии — надо разбираться что с турбиной не так.

Причин нерабочей турбины много: неработают датчики давления турбины, неисправен расходомер воздуха, негерметичен канал подачи воздуха, забит интеркуллер, или даже забита выхлопная труба.

Проверить форсунки можно так, как это указано в соседнем разделе. Высокий уровень обратки отрицательно влияет на работу двигателя. Черный дым, при разгоне троит, тупит, двигатель может плохо заводиться.

2) Временами двигатель троит, пропуски зажигания, постукивает и может заглохнуть в любой момент. В остальное время работает нормально. Нередко бывали случаи, когда провода идущие к форсункам с годами высыхали, ломалась изоляция и происходило замыкание на корпус двигателя.

3) Кстати, у кого машина моложе 2007 года и оснащена пьезо форсунками может получиться так, что машина заводится с пол оборота, но тут же глохнет. Скорее всего вышел из строя пьезоэлемент форсунки. В этом случае снимайте поочередно фишки с форсунок и пробуйте завести машину.

Без замкнутой форсунки машина заведется на трех цилиндрах и не будет глохнуть.

4) Двигатель на горячую не заводится. С эфиром или с буксира заводится без проблем (по началу). Это явный признак выхода одной или нескольких форсунок из строя. Требуется капитальный ремонт форсунок или покупка новых.

5) Идет белый дым. О сновные причины: распылители форсунок вышли из строя или забит сажевый фильтр, турбина «гонит» масло. В первом случае если у вас пьезо форсунки — необходимо проверить форсунки на стенде. Во втором случае может повышаться уровень масла в двигателе и повышается расход топлива. Машина запускает процесс регенерации сажевого фильтра. Происходит впрыск дополнительной порции топлива для повышения температуры отработавших газов. При частой регенерации часть топлива просачивается через поршневую в картер двигателя. Отсюда и повышенный уровень масла.

Кстати, если после удаления сажевого фильтра неправильно сделать прошивку — может возникнуть множество проблем, которые диагностический сканер просто не увидит.

В таком случае процесс диагностики заметно усложняется.

Дизельные двигатели CDI по всем показателям в настоящее время заняли лидирующие позиции на мировом рынке.

Что такое CDI двигатель

Производство двигателя впервые было налажено немецким концерном «Мерседес». Сокращение CDI расшифровывается, как Common rail Diesel Injection, что означает система впрыска дизельного топлива.

Данная система спроектирована высококвалифицированными работниками в 2001 году. Система подачи топлива дизеля Common Rail была взята за основу при разработке CDI двигателей. Предъявляемые повышенные требования к дизельным двигателям, стали фундаментом зарождения системы CR, а в будущем и CDI. Система Common Rail установленная на дизельный мотор впервые запущена в 1997 году компанией «Bosch».

Уменьшение потребления топлива на 15%, увеличение мощности мотора CDI на 40%, связано с использованием системы Common Rail, но значительно затрудняет их ремонт. Поскольку «Мерседес» является передовым концерном, то он незамедлительно внедрил на новые автомобили данную систему.

Ко всему прочему владельцы автомобилей со старыми двигателями получили возможность замены на мотор CDI нового образца и получение фирменных комплектующих к ним.

Компания «Мерседес» стала первой из компаний, которые смогли предложить такую услугу. Тем самым еще более прочно укрепив свой статус лидера на рынке.

Работа и обслуживание моторов

Работает Common Rail за счет большого давления, которое присутствует постоянно в единой магистрали и через управляемые электроникой впрыскиваются в цилиндры. Зачастую клапаны устанавливают пьезоэлектрические, такие установлены на двигателях Mercedes.

Естественно техническое обслуживание и ремонт CDI увеличиваются в цене, по сравнению с традиционными. Зато повышается экономичность, увеличивается крутящий момент, мощность, повышается срок эксплуатации деталей.

Присутствуют в CDI также такие неоспоримые качества как снижение уровня шума, токсичности, вибрации. Еще в конструкцию был внедрен блок управления, который повышает качество работы системы питания за счет многочисленных программ.

Независимо от оборотов двигателя и нагрузки при любой последовательности впрыска по цилиндрам, данный блок управления всегда поддерживает высокое давление. За счет этого даже при самых маленьких оборотах коленчатого вала топливная смесь впрыскивается в цилиндр.

«Предварительный» впрыск — это ноу-хау компании «Мерседес» специалисты, которой внедрили дополнительно к системе Common Rail в 2001 году. Принцип его работы основан на впрыске топлива за доли секунды до основной порции топливной смеси. Это позволяет основной порции топлива попадать в камеру сгорания уже предварительно разогретую.

Воспламенение топлива за счет этого естественно улучшается, что позволяет снизить расход и . За счет такого принципа функционирования дизельные моторы CDI обрели свое наименование. Каждый второй автомобиль Европы на данный момент имеет в своей комплектации дизельный двигатель CDI.

Изначально такие движки естественно были установлены на автомобили компании «Мерседес». Это были автомобили серий ML и Vito.

В 2002 году один из основных французских производителей Peugeot и Итальянская компания-производитель Fiat стали применять аналогичную систему. Но лидирующей компанией по вопросам технологий, сервиса и разработок остается Mercedes. Компания не сдает своих убеждений не при каких обстоятельствах.

Поэтому при настоятельной потребности ремонта двигателя CDI, правильным решением будет обращение в специализированный сервис компании, где будет произведена высококвалифицированная работа специалистов.

Технически компания «Мерседес» безостановочно развивается. Единые нормативы обслуживания своих автомобилей принадлежат именно разработчикам автогиганта Mercedes.

На основании разработанных стандартов клиентам концерна рекомендуется использовать оригинальные автозапчасти и обращаться к дилерам. Если же на автомобиле установлены не оригинальные запчасти, то компания все гарантийные обязательства аннулирует.

Обслуживание моторов требует высокой квалификации и необходимость применения оригинальных фирменных автозапчастей. Срок службы двигателей CDI имеет значительную цифру. По факту поломок выходят из строя навесное или вспомогательное оборудование.

Превосходное обслуживание, передовые технологии, качество — все эти достойные выражения в автомобильной среде принадлежат компании, разработавшей двигатели марки CDI, а именно великому автоконцерну «Мерседес-Бенц».

Первый дизель Mercedes с системой впрыска типа Common Rail был представлен в конце 1997 года. Это был мотор 2.1 CDI с обозначением ОМ 611 мощностью от 82 до 204 л.с. Он дал начало новому семейству двигателей, применявшемуся, в том числе в коммерческих автомобилях и легких грузовиках (ОМ 646 и ОМ 651).

В зависимости от назначения, дизель получал различное коммерческое обозначение. Например, 180 CDI, 200 CDI, 220 CDI и 250 CDI. Существуют так же модификации BlueTEC и BlueEFFICIENCY.

Изначально этот двигатель имел рабочий объем 2151 куб. см и мощность 102 или 125 л.с. В конструкции агрегата использовалась система впрыска Bosch с электромагнитными форсунками Common Rail первого поколения, система рециркуляции отработавших газов и турбонаддув. Привод ГРМ цепного типа, что снижает затраты на техническое обслуживание.

В 1999 году появились версии мощностью 115 и 143 л.с, а три года спустя — новое поколение 2.1 CDI с обозначением ОМ 646 и отдачей 122 и 150 л.с. Позже были представлены и остальные модификации. Двигатель получил систему Common Rail нового поколения, электрический клапан EGR и генератор с жидкостным охлаждением. ОМ 646 дополнительно оснастили балансирными валами и электрическим ТНВД (вместо механического).

Последнее поколение моторов 2.1 CDI было названо ОМ 651 и дебютировало в 2008 году. Это практически другой двигатель, в котором изменен диаметр цилиндра (уменьшен до 83 мм) и ход поршня (увеличен до 99 мм). Рабочий объем новой версии агрегата сократился до 2143 см3. Степень сжатия была снижена до 16,2:1. Блок двигателя, как и прежде, изготовлен из чугуна, а головка – из легких сплавов.

Новый турбодизель очень продвинутый, а значит и более дорогой в обслуживании и ремонте. Он имеет два турбонагнетателя (в версиях более 143 л.с.), которые создают давление наддува 2 бар. Однорядная цепь ГРМ находится сзади двигателя – со стороны коробки. Балансировочный вал приводится в движение зубчатыми шестернями.

В более мощных модификациях применены пьезоэлектрические форсунки фирмы Delphi. Давление впрыска достигает 2000 бар. Для сравнения, давление впрыска ОМ 611 – 1350 бар. Система впрыска Common Rail обеспечивает мягкую работу двигателя и низкий расход топлива. Экономичность, конечно же, зависит от степени форсировки и веса автомобиля. В случае с Mercedes C-Class средний расход 143-сильной версии составляет около 7 л/100 км. Вопреки общепринятому мнению, система впрыска не является проблемной и слишком дорогой в ремонте.

Механики подчеркивают, что на вторичном рынке большинство дизельных Mercedes имеют гораздо больший пробег, чем показывают счетчики. Отсюда и неприятности, с которыми сталкиваются вторые и последующие владельцы. Турбонагнетатель и двухмассовый маховик редко подводят ранее 150 000 км.

Проблемы появились в последних двигателях ОМ 651. Они связаны с топливными форсунками Delphi (дефектные уже заменены) и утечками охлаждающей жидкости. Затраты на замену форсунок частично компенсировались изготовителем форсунок.

Общие неисправности двигателей 2.1 CDI

Чаще всего владельцы Мерседес с большим пробегом и двигателем 2.1 CDI имеют проблемы с утренним запуском и падением мощности. В обоих случаях причин несколько. Проблемы с запуском, как правило, связаны с падением давления в системе впрыска из-за неисправности насоса, форсунок или клапана высокого давления. Падение мощности может быть вызвано неисправностью системы заслонок во впускном коллекторе.

В автомобилях, оборудованных фильтром твердых частиц (первоначально вообще не использовался, в 2003 году появился в некоторых моделях, а позже стал применяться массово) и передвигающихся только по городу, возникают проблемы с саморегенерацией, а так же происходит разжижение масла топливом.

Проблемы усугубились после появления двигателя серии ОМ 651. Форсунки выходили из строя примерно к 50 000 км. Некоторые источники сообщают, что дефект затронул около 300 000 автомобилей.

Шкив генератора имеет муфту свободного хода, которая часто выходит из строя. Неисправность сопровождается шумом, а промедление с заменой может ускорить износ натяжителя ремня. Устранение проблемы не сложное и не слишком дорогое. Шкив стоит менее 60 долларов.

Электромагнитные клапаны используются для управления производительностью турбокомпрессора и EGR (старые двигатели 2.1). Когда они отказывают, наблюдается падение мощности. Ремонт быстр и недорог – около 50 долларов.

Симптомы: проблемы с запуском двигателя, неравномерная работа, чрезмерно большой расход топлива. Форсунки можно отремонтировать. Стоимость услуги – около 70 долларов за штуку.

Более серьезные неприятности возникают, когда теряют герметичность уплотнительные шайбы под форсунками. Извлечение форсунок – сложная задача. Они могут прикипеть — понадобится фрезеровка.

Симптомы: слишком медленный прогрев двигателя. Термостат может открыться уже при температуре 45 градусов. Внимание! Приобретая данную деталь, всегда используйте каталожный номер – термостат неоднократно модернизировался. Стоимость нового – около 60-70 долларов.

Неисправности двигателей ОМ 651

Вскоре после начала производства нового 2,1-литрового турбодизеля выяснилось, что пьезоэлектрические форсунки Delphi изготовлены с дефектом. Необходима замена.

Утечки охлаждающей жидкости

Бесконтрольные утечки антифриза вскоре могут привести к перегреву двигателя. Виноват в этом насос системы охлаждения. Потекшую помпу необходимо заменить.

Заслонки во впускном коллекторе

Заслонки со временем изнашиваются и разрушаются. Это приводит к заметному падению мощности, а в случае обрыва – к повреждению двигателя. Из-за отсутствия деталей приходится менять весь коллектор, что увеличивает стоимость ремонта до 600 долларов.

В Российских условиях эксплуатации («солярка» плохого качества) топливный фильтр рекомендуется менять через каждые 40 000 км (согласно предписаниям производителя – 60-80 тыс. км). Это позволит продлить срок службы системы впрыска.

Выжигание сажевого фильтра

Процесс саморегенерации не возможен при эксплуатации автомобиля преимущественно на коротких дистанциях. Необходимо периодическое создание благоприятных условий – продолжительные поездки по скоростным шоссе.

В двигателях используется цепной привод ГРМ, не требующий технического обслуживания. Цепь, как правило, не требует замены. Тем не менее, при больших пробегах рекомендуется проверить ее состояние.

Зажигание на мотоцикл Урал

Зажигание на мотоцикл Урал

Сегодня мотоциклы Урал встречаются у многих опытных мотоциклистов. Этот вид мототехники является надежным и может прослужить долгие годы. Мотоциклы Урал обладают целым набором рекомендации по использованию. Главной из них является отслеживание работы всех систем. Необходимо для того чтобы они работали налажено производить профилактическую настройку некоторых деталей. В частности регулярной настройке подвергается система зажигания.

Для чего нужна настройка зажигания на мотоцикле Урал

Не каждому мотоциклисту известно, как отрегулировать зажигание на мотоцикле Урал. Однако этот процесс является необходимостью. Со временем владельцы каждого транспортного средства сталкиваются с большим набором проблем. Самые большие из них связаны с поломкой мотора или двигателя. Для того чтобы этого не произошло нужно регулярно осуществлять профилактические работы и регулировать систему зажигания и клапана.

Если не освоить то, как настроить заживание на мототехнике Урал, то можно столкнуться с тем, что потенциал мотора не будет полностью раскрываться. Он не будет работать на полной мощности. Этот может привести к тому, что мотор просто придет со временем в негодность.

Схема зажигания мотоцикла Урал

Как настроить зажигание на мотоцикле Урал

Каждому владельцу отечественных мотоциклов необходимо обладать знаниями о том, как настроить зажигание на мотоцикле Урал.

Для этого нужно выполнить определенную последовательность действий

  • снять пробку смотрового окошка, который находиться на картере двигателя байка.
  • повернуть каленвал двигателя при помощи кикстартера,
  • выставить прерыватель на уровне прекращения действия контактов,
  • затянуть винты, которые крепят прерыватель к моторному корпусу. Зазор должен составлять пол сантиметра.
  • приступить к регулировке зазора между разрядниками. Нужно установить его на уровне 0.9 миллиметров.

В заключении необходимо закрыть крышку прерывателя и крышку из алюминия, которая закрывает и катушку и прерыватель. Данная последовательность действий позволит продлить срок действия мотора на определенный период. После нескольких тысяч километров пробега необходимо повторно провести настройку зажигания на мототехнике Урал.

Источник http://avanzzaro.ru/literacy/chto-takoe-magneto-v-avtomobile-zazhiganie-motocikla-kakie-sistemy-byvayut-vs/

Источник http://toyota-cluber.ru/chto-takoe-cdi-na-motocikle-cdi-zazhiganie-deshke-nastroika-ugla.html

Источник http://motoking.ru/sovety/kak_otregulirovat_zazhiganie_na_motocikle_ural

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: