Как работает батарейная система зажигания?

Содержание

Контактная система батарейного зажигания. Система зажигания

Источники электрического тока (аккумуляторная батарея и генератор, подробный разговор о которых будет в разделе «Электрооборудование автомобиля») вырабатывают ток низкого напряжения. Они «выдают» в бортовую электрическую сеть автомобиля 12–14 вольт. Для возникновения искры между электродами свечи на них необходимо подать 18–20 тысяч вольт! Поэтому в системе зажигания имеются две электрические цепи – низкого и высокого напряжения (рис. 21).Контактная система зажигания состоит из (рис. 21):

– прерывателя тока низкого напряжения;

– распределителя тока высокого напряжения;

– центробежного регулятора опережения зажигания;

– вакуумного регулятора опережения зажигания;

– проводов низкого и высокого напряжения;

Катушка зажигания (рис. 21)предназначена для преобразования тока низкого напряжения в ток высокого напряжения. Как и большинство приборов системы зажигания, она располагается в моторном отсеке автомобиля.

а) электрическая цепь низкого напряжения: 1 «масса» автомобиля; 2 – аккумуляторная батарея; 3 – контакты замка зажигания; 4 – катушка зажигания; 5 – первичная обмотка (низкого напряжения); 6 – конденсатор; 7 – подвижный контакт прерывателя; 8 – неподвижный контакт прерывателя; 9 – кулачок прерывателя; 10 – молоточек контактов

б) электрическая цепь высокого напряжения: 1 катушка зажигания; 2 – вторичная обмотка (высокого напряжения); 3 – высоковольтный провод катушки зажигания; 4 – крышка распределителя тока высокого напряжения; 5 – высоковольтные провода свечей зажигания; 6 – свечи зажигания; 7 – распределитель тока высокого напряжения («бегунок»); 8 – резистор; 9 – центральный контакт распределителя; 10 – боковые контакты крышки

Рис. 21. Контактная система зажигания

Принцип работы катушки зажигания очень прост и знаком из школьного курса физики. Когда по обмотке низкого напряжения протекает электрический ток, вокруг нее создается магнитное поле. Если прервать ток в этой обмотке, то исчезающее магнитное поле индуцирует ток уже в другой обмотке (высокого напряжения).

За счет разницы в количестве витков обмоток катушки, из 12-ти вольт мы получаем необходимые нам 20 тысяч вольт! Цифра весьма впечатляющая, но это как раз то напряжение, которое в состоянии пробить воздушное пространство (около миллиметра) между электродами свечи зажигания.

Если кто из вас, испугавшись этой цифры, решил вообще не дотрагиваться до чего-либо электрического в машине, то напрасно.

«Убивает не напряжение, а ток» – известное выражение у электриков, как нельзя лучше подходит к ситуации с электричеством в автомобиле.

В системе зажигания очень малые токи, поэтому, если вы и дотронетесь до проводов или приборов системы, то будет лишь несколько «неприятно», но не более того. Да и произойдет это только, если вы стоите босиком (или в мокрой обуви) на сырой земле или если одна рука на «массе», а другая на тех самых 20000 В.

Прерыватель тока низкого напряжения (контакты прерывателя – рис. 21) нужен для того, чтобы размыкать ток в цепи низкого напряжения. При этом во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения, который затем поступает на центральный контакт распределителя.

Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта.

Параллельно контактам включен конденсатор, который необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного между ними хочет проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного.

Но это только половина полезной работы конденсатора. Он еще участвует и в увеличении напряжения во вторичной обмотке катушки зажигания. Когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения.

«Зачем такой длинный разговор о такой маленькой штучке в такой большой машине?» – спросите вы.

Так вот учтите, при выходе конденсатора из строя двигатель работать не будет! Напряжение во вторичной цепи получится недостаточно большим для того, чтобы пробить воздушную преграду между электродами свечи зажигания. Может быть, иногда, слабая искорка и будет проскакивать, но нам нужна достаточно «горячая» и стабильная искра, которая гарантированно воспламенит рабочую смесь и обеспечит нормальный процесс ее сгорания. А для этого, как раз и необходимы те самые «страшные» 20 тысяч вольт, в «приготовлении» которых участвует и конденсатор тоже.

Прерыватель тока низкого напряжения и распределитель высокого напряжения расположены в одном корпусе и имеют привод от коленчатого вала двигателя.

Часто водители называют этот узел коротко – «прерыватель-распределитель» (или еще короче – «трамблер»).

Крышка распределителя и распределитель (ротор) тока высокого напряжения (рис. 21 и 22) предназначены для распределения тока высокого напряжения по свечам цилиндров двигателя.

Рис. 22. Прерыватель-распределитель: 1 диафрагма вакуумного регулятора; 2 – корпус вакуумного регулятора; 3 – тяга; 4 – опорная пластина; 5 – ротор распределителя («бегунок»); 6 – боковой контакт крышки; 7 – центральный контакт крышки; 8 – контактный уголек; 9 – резистор; 10 – наружный контакт пластины ротора; 11 – крышка распределителя; 12 – пластина центробежного регулятора; 13 – кулачок прерывателя; 14 – грузик; 15 – контактная группа; 16 – подвижная пластина прерывателя; 17 – винт крепления контактной группы; 18 – паз для регулировки зазоров в контактах; 19 – конденсатор; 20 – корпус прерывателя-распределителя; 21 – приводной валик; 22 – фильц для смазки кулачка

После того, как в катушке зажигания образовался ток высокого напряжения, он попадает (по высоковольтному проводу) на центральный контакт крышки распределителя, а затем через подпружиненный контактный уголек на пластину ротора.

Во время вращения ротора ток через небольшой воздушный зазор «соскакивает» с его пластины на боковые контакты крышки. Далее, через высоковольтные провода импульс тока высокого напряжения попадает к свечам зажигания.

Боковые контакты крышки распределителя пронумерованы и соединены высоковольтными проводами со свечами цилиндров в строго определенной последовательности.

Таким образом, устанавливается «порядок работы цилиндров», который выражается рядом цифр.

Как правило, для четырехцилиндровых двигателей применяется порядок работы: 1–3–4–2. Это означает, что после воспламенения рабочей смеси в первом цилиндре, следующий «взрыв» произойдет в третьем, потом в четвертом и, наконец, во втором цилиндре. Такой порядок работы цилиндров установлен для равномерного распределения нагрузки на коленчатый вал двигателя.

Подача высокого напряжения на электроды свечи зажигания должна происходить в конце такта сжатия, когда поршень не доходит до верхней мертвой точки примерно 4–6°, измеряя по углу поворота коленчатого вала. Этот угол называют углом опережения зажигания.

Необходимость опережения момента зажигания горючей смеси обусловлена тем, что поршень движется в цилиндре с огромной скоростью. Если смесь поджечь несколько позже, то расширяющиеся газы не будут успевать делать свою основную работу, то есть давить на поршень в должной степени. Хотя горючая смесь и сгорает в течение 0,001–0,002 секунды, поджигать ее надо до подхода поршня к верхней мертвой точке. Тогда в начале и середине рабочего хода поршень будет испытывать необходимое давление газов, а двигатель будет обладать той мощностью, которая требуется для движения автомобиля.

Первоначальный угол опережения зажигания выставляется и корректируется с помощью поворота корпуса прерывателя-распределителя. Тем самым мы выбираем момент размыкания контактов прерывателя, приближая их или, наоборот, удаляя от набегающего кулачка приводного валика прерывателя-распределителя.

В зависимости от режима работы двигателя, условия процесса сгорания рабочей смеси в цилиндрах постоянно меняются. Поэтому для обеспечения оптимальных условий необходимо постоянно менять и указанный выше угол (4–6°). Это обеспечивают центробежный и вакуумный регуляторы опережения зажигания.

Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания в зависимости от скорости вращения коленчатого вала двигателя.

При увеличении оборотов коленчатого вала двигателя поршни в цилиндрах увеличивают скорость своего возвратно-поступательного движения. В то же время скорость сгорания рабочей смеси остается практически неизменной. Следовательно, для обеспечения нормального рабочего процесса в цилиндре смесь необходимо поджигать чуть раньше. Для этого искра между электродами свечи должна проскочить раньше, а это возможно лишь в том случае, если контакты прерывателя тоже разомкнутся раньше. Это и должен обеспечить центробежный регулятор опережения зажигания (рис. 23).

а) расположение деталей регулятора: 1 кулачок прерывателя; 2 – втулка кулачков; 3 – подвижная пластина; 4 – грузики; 5 – шипы грузиков; 6 – опорная пластина; 7 – приводной валик; 8 – стяжные пружины

Работа любого бензинового двигателя внутреннего сгорания была бы невозможна без специальной системы зажигания. Именно она отвечает за воспламенение смеси в цилиндрах в строго определенный момент. Различают несколько возможных вариантов:

  • контактная;
  • бесконтактная;
  • электронная.

Одинаковы элементы разных систем зажигания автомобиля

Незаменимым и наиболее востребованным является наличие аккумуляторной батареи. Даже в отсутствие или при поломке генератора при помощи неё можно ещё некоторое время продолжать движение. Генератор также есть неотъемлемой частью, без которой нормальное функционирование любой из систем невозможно. Свечи зажигания, бронепровода, высоковольтная и управляющие элементы дополняют любую из упомянутых систем. Основное различие меду ними заключается в типе, управляющего моментом зажигания и отвечающего за искрообразование устройства.

Контактный прерыватель-распределитель зажигания

Это устройство инициирует возникновение искры высокого, до 30000 В, вольтажа на контактах свечей зажигания. Для этого он соединяется с высоковольтной катушкой, благодаря которой происходит образование высокого напряжения. Сигнал на катушку передается при помощи проводов от специальной контактной группы. При её размыкании кулачковым механизмом происходит образование искры. Момент её возникновения должен строго соответствовать требуемому положению поршней в цилиндрах. Это достигается благодаря четко рассчитанному механизму, передающему вращательное движение на прерыватель-распределитель. Одним из недостатков устройства является влияние механического износа на время возникновения искры и на её качество. Это влияет на качество работы двигателя, а значит может требовать частых вмешательств в регулировку его работы.

Бесконтактное зажигание

Этот тип устройств не зависит на прямую от размыкания контактов. Основную роль в моменте искрообразования здесь играет транзисторный коммутатор и особый датчик. Отсутствие зависимости от чистоты и качества поверхности контактной группы может гарантировать более качественное искрообразование. Однако этот тип зажигания тоже использует прерыватель-распределитель, который отвечает за передачу тока на нужную свечу в нужный момент.

Электронное зажигание

В этой системе воспламенения смеси полностью отсутствуют механические движущиеся части. Благодаря наличию специальных датчиков и особого блока управления, образование искры и момент её раздачи на цилиндры выполняются гораздо более точно и надежно, чем у вышеупомянутых систем. Это дает возможность улучшить работу двигателя, увеличить его мощность и снизить расход топлива. Кроме того, радует и высокая надежность устройств такого типа.

Основные этапы работы системы зажигания

Различают несколько основных этапов работы любых систем зажигания:

  1. накопление необходимого заряда;
  2. высоковольтное преобразование;
  3. распределение;
  4. искрообразование на свечах зажигания;
  5. возгорание смеси.

Видео про принцип работы системы зажигания:

Контактная система зажигания выделяется наличием в составе распределителя, от которого производится подача напряжения к свечам зажигания двигателя.

В чем особенности этой системы? Где она применяется, и как работает? Из каких элементов состоит, и с какими поломками может столкнуться автовладелец в процессе пользования транспортным средством? Рассмотрим эти моменты подробнее.

Где используется?

Прошлые и настоящие владельцы ВАЗ «классики», разбирающиеся в конструкции таких автомобилей, прекрасно знают слабые места и принципы функционирования схемы зажигания контактного типа.

Ее особенность заключается в распределении напряжения к камерам сгорания двигателя через контактные соединения (отсюда и название).

Современные автомобили оборудуются более современным (электронным) зажиганием, которое управляется микропроцессором.

К основным системам, работающим на контактном принципе, стоит отнести:

Общий принцип работы

Наличие контактной системы зажигания в автомобиле подразумевает, что зажигание горючего в цилиндрах осуществляется по факту появления искры от свечи зажигания.

При этом сама искра возникает при поступлении импульса высокого напряжения от катушки зажигания.

Ключевую функцию выполняет катушка зажигания, которая по принципу работы напоминает трансформатор.

Она состоит из двух обмоток (первичной и вторичной), намотанных на сердечник из металла.

Сначала напряжение подводится к первичной обмотке, после чего в катушке создается ток.

Как только происходит кратковременный разрыв первичной цепи, магнитное поле нивелируется, но во вторичной обмотке возникает высокое напряжение (около 25000 Вольт).

В этот момент на первичной обмотке также присутствует напряжение, равное 300 Вольтам.

Причина его появления — токи самоиндукции. Именно из-за появления этого тока возникает обгорание и искрение контактов прерывателя.

Из сказанного выше можно сделать вывод, что вторичное напряжение напрямую зависит от следующих аспектов:

  • Магнитного поля;
  • Уровня интенсивности падения тока в первичной обмотке.

Для роста вторичного напряжения и снижения риска обгорания контактной группы, в цепочку включается конденсатор (устанавливается параллельно). Даже при незначительном размыкании конденсатор заряжается.

Принципиальная схема контактной системы зажигания показана ниже.

Разряд емкости происходит через первичную обмотку, посредством формирования импульсного тока обратного напряжения. Благодаря этой особенности, магнитное поле исчезает, а вторичное напряжение растет.

Оптимальная емкость конденсатора для контактной системы зажигания составляет 0,17-0,35 мкФ. Для примера, в «Жигулях» отечественного производства установлен конденсатор, имеющий емкость в 0,2-0,25 мкФ (при частоте от 50 до 1000 Гц).

Если система зажигания автомобиля работает без сбоев, вторичное напряжение должно постоянно расти. Оно зависит от двух основных параметров — размера зазора между свечными электродами, а также давления в цилиндрах машины.

Для контактной системы зажигания этот параметр (вторичное напряжение) должен находиться на уровне 8-12 Вольт.

Чтобы система работала без сбоев, в момент прерывания упомянутый показатель вырастает до 16-25 кВ. Наличие подобного запаса позволяет избежать неблагоприятных последствий от тех или иных колебаний в системе зажигания.

К упомянутым выше проблемам можно отнести корректировки состава горючей смеси или изменение расстояния между электродами свечи.

К примеру, снижение уровня кислорода в топливно-горючей смеси приводит к росту напряжения до 20 кВ.

Несмотря на ряд проведенных мероприятий, полностью избежать подгорания контактной группы создателям контактной системы зажигания не удалось. Оптимальным способом снижения этого эффекта является четкое выдерживание зазора на минимальном уровне (0,3-0,4 мм).

В качестве примера можно привести отечественные машины ВАЗ, в которых величина зазора в прерывателе равна 0,35-0,45 мм, что соответствует углу в 52-58 градусов Цельсия (при условии, что контактная группа находится в замкнутом состоянии).

В случае изменения этого угла корректируется и напряжение во вторичной обмотке. В итоге искры появляются не только на контактах, но и на бегунках. По этой причине уменьшается качество искры, и мотор теряет мощность.

Отдельного внимания заслуживает надежность контактной системы зажигания, которая зависит от целого ряда факторов:

  • Формы, энергии и времени появления искры;
  • Количества искр на определенной площади;
  • Вторичного напряжения (одна из наиболее важных характеристик). Чем больше этот параметр, тем меньше зависимость системы от состава горючей смеси и уровня чистоты электродов.

Устройство

Не секрет, что контактная система зажигания состоит из множества различных элементов:

  • Механический прерыватель и распределитель. Первый дает ток низкого, а второй — высокого напряжения;
  • Замок, катушка и свечи зажигания;
  • Регуляторы опережения зажигания представлены двумя видами — центробежным и вакуумным;
  • Высоковольтные провода.

Рассмотрим основные элементы подробно:

Конструктивно регулятор — пара грузиков, которые действуют на пластинку с размещенными на ней кулачками прерывателя. Здесь стоит отметить, что пластинка свободно перемещается, но угол опережения ставится за счет позиции трамблера мотора.

Принцип действия

Для полноценного обслуживания контактной системы зажигания важно понимать ее принцип действия, а также особенности взаимодействия различных элементов.

Пока контур прерывателя замкнут, ток проходит только по первичной обмотке.

Как только происходит разъединение цепи с помощью прерывающего устройства, во второй обмотке формируется высокое напряжение.

В этот же момент созданный импульс направляется по бронепроводам к крышке распределительного устройства, а дальше — к свечам зажигания. При этом распределение производится под определенным углом опережения.

Обороты коленчатого и распределительного валов находятся в полном взаимодействии. Это значит, что при росте оборотов первого, частота вращения второго также возрастает.

Здесь в работу вступает регулятор центробежного типа, грузики которого расходятся и передвигают передвижную пластинку с кулачками.

Немногим раньше производится разъединение цепочки прерывателя, а угол опережения растет.

В случае снижения оборотов коленвала происходит обратный процесс — снижение угла опережения.

Схема работы показана ниже.

Контактно-транзисторная система зажигания

Принципиальная схема показана ниже.

Особенность системы в том, что применение дополнительного устройства позволило снизить ток в цепи и продлить ресурс контактной группы прерывателя (она стала меньше подгорать).

Контактно-транзисторная схема, благодаря незначительным изменениям, получила лучшие характеристики, если сравнивать ее с классическим вариантом зажигания. Из-за применения транзистора в системе был добавлен новый узел — коммутатор.

Преимущество транзистора в этой схеме в том, что даже небольшого тока, направленного на управление (в базу), достаточно для контроля тока большей величины.

Как уже отмечалось, новая система контактно-транзисторного типа имеет небольшие отличия от прежней версии системы. Ее особенность заключается в особых характеристиках, которыми не может похвастаться стандартная контактная схема.

Главное отличие заключается в том, что прерыватель взаимодействует напрямую с транзистором, а не с «бобиной». В остальном работа контактно-транзитной системы аналогична.

Как только происходит прерывание тока в первичной обмотке, во второй цепи возникает импульс высокого напряжения.

Если не обращать внимания на конструктивные особенности и принципы подключения коммутатора, можно выделить одно главное преимущество — возможность повышения первичного тока, благодаря применению транзистора.

При этом удается решить ряд задач:

  • Увеличить зазор между свечными электродами;
  • Поднять вторичное напряжение;
  • Устранить проблемы с пуском при низкой температуре;
  • Оптимизировать процесс образования искры;
  • Поднять число оборотов и мощность мотора.

Еще одна особенность контактно-транзисторной схемы заключается в необходимости использования катушки с отдельной первичной и вторичной обмоткой.

Рассмотренные изменения схемы позволили снизить нагрузку на контактную группу прерывателя и уменьшить проходящий через нее ток. В итоге контакты служат дольше, а надежность системы возрастает.

Несмотря на рассмотренные плюсы, нельзя не отметить и ряд минусов контактно-транзисторной системы, которые связаны с работой прерывателя.

Так, в схеме формируется искра в момент, когда происходит разрывание тока в «бобине». Ток, который поступает в транзистор, имеет достаточную величину для влияния на работу детали.

Кроме того, уменьшение тока на контактной группе прерывателя негативно сказывается на определенных характеристиках системы.

Неисправности и их причины

От эффективности работы контактной системы зажигания зависит стабильность пуска автомобиля. Вот почему автовладелец должен знать, какие бывают неисправности, и чем они вызваны.

К основным поломкам можно отнести:

Мощность мотора падает или возникают перебои в его работе.

Причин может быть несколько:

  • Нарушение целостности крышки распределителя;
  • Повреждение ротора;
  • Выход из строя свечи зажигания или нарушение зазора между электродами;
  • Ошибочно .

Для устранения поломки можно сделать следующее — отрегулировать угол опережения, поменять вышедшие из строя элементы или выставить необходимые зазоры в прерывателе и электродах свечей.

На свечах отсутствует искра.

Подобная неисправность может быть вызвана:

  • Обгоранием контактов прерывателя и отсутствием необходимого зазора;
  • Плохим контактом или обрывом проводов во вторичной цепи;
  • Выходом из строя конденсатора, ротора, катушки зажигания, бронепроводов или свечей.

Для устранения неисправности требуется отрегулировать зазор контактов прерывателя, поменять неисправные элементы и (или) проверить исправность цепей обеих обмоток (высшей и низшей).

Для создания искрового разряда между электродами свечи зажигания необходимо высокое напряжение (15000-30000 В), так как газы, находящиеся в цилиндре, не проводят ток низкого напряжения. На современных автомобильных двигателях применяют однопроводную систему соединения источников тока с потребителями. Вторым проводником электрической энергии служит масса (корпус) — все соединенные между собой металлические части автомобиля.

При однопроводной системе включения приборов электрооборудования уменьшается число проводов, упрощается техническое обслуживание и уменьшается стоимость системы. Отрицательные выводы генератора , аккумуляторной батареи и всех потребителей электроэнергии соединены с массой, а положительные изолированы от нее. В эксплуатации необходимо внимательно следить за состоянием изоляции на проводах и за их креплением, так как нарушение изоляции может привести к возникновению короткого замыкания .

Схема устройства контактной системы батарейного зажигания :

а) схема ; б) положения ключа выключателя зажигания и стартера ; 1 — рычажок прерывателя ; 2 — подвижный контакт ; 3 — неподвижный контакт ; 4 — кулачок ; 5 — прерыватель низкого напряжения ; 6 — конденсатор ; 7, 14, 23 — провода ; 8 — выключатель зажигания ; 9 — добавочный резистор ; 10 — первичная обмотка ; 11 — вторичная обмотка ; 12 — катушка зажигания ; 13 — магнитопровод ; 15 — выключатель добавочного резистора ; 16 — амперметр ; 17 — аккумуляторная батарея (АКБ) ; 18 — выключатель электродом ; 19 — ротор с электродом ; 20 — распределитель ; 21, 24 — подавительные резисторы ; 25 — свеча зажигания ; 26 — ключ выключателя зажигания.

Контактная система батарейного зажигания состоит из : аккумуляторной батареи 17, катушки зажигания 12, прерывателя 5 низкого напряжения с конденсатором 6, распределителя импульсов высокого напряжения 20, свечей зажигания 25, выключателя зажигания 8, амперметра 16. Прерыватель 5 имеет два контакта : неподвижный 3 соединенный с массой и подвижный 2, расположенный на рычажке 1 и соединенный с проводом 7 с первичной обмоткой 10 катушки зажигания. В прерывателе установлен вращающийся валик с кулачком 4, при помощи которого размыкаются контакты. В системе зажигания в качестве источника электрического тока используется генератор переменного тока.

При замыкании контактов прерывателя ток от АКБ проходит по первичной обмотке катушки зажигания , создавая вокруг нее магнитное поле.

Цепь низкого напряжения следующая : положительный вывод АКБ 17 — амперметр 16 — выключатель зажигания 8 добавочный резистор 9 — первичная обмотка 10 — провод 7 — подвижный контакт 2 — неподвижный контакт 3 — масса — выключатель 18 цепи АКБ — отрицательный вывод АКБ.

При размыкании контактов прерывателя обесточивается первичная обмотка катушки зажигания и резко уменьшается магнитное поле. Магнитный поток исчезающего поля пересекает витки вторичной и первичной обмоток, при этом индуктируется электродвижущая сила (ЭДС) высокого напряжения во вторичной и ЭДС самоиндукции в первичной обмотках. Возникающие во вторичной обмотке импульсы высокого напряжения подводятся к свечам зажигания в соответствии с порядком работы цилиндров двигателя . Вращающийся ротор 19 своим электродом распределяет импульсы высокого напряжения по электродам крышки распределителя. Частота вращения ротора в 2 раза меньше частоты вращения коленчатого вала и, таким образом, совпадает с частотой вращения кулачка прерывателя .

Положение пластины ротора напротив каждого из электродов крышки распределителя соответствует разомкнутому состоянию контактов прерывателя.

Цепь высокого напряжения : вторичная обмотка11 — провод 14 высокого напряжения — подавительный резистор 21 — электрод ротора 19 — один из электродов крышки распределителя 20 — провод 23 — подавительный резистор 24 — свеча зажигания 25 — центральный электрод свечи — боковой электрод свечи — масса — выключатель 18 цепи АКБ — отрицательный вывод АКБ 17 — положительный вывод АКБ 17 — амперметр 16 — выключатель зажигания 8 — добавочный резистор 9 — первичная обмотка 10 — вторичная обмотка катушки зажигания 12.

В первичной обмотке ток самоиндукции возникает при замыкании контактов прерывателя. Ток самоиндукции замедляет процесс исчезновения тока в первичной обмотке, нежелательно, так как при размыкании контактов увеличивается период искрообразования между ними, снижаются эффективность и надежность системы зажигания. Параллельно контактам прерывателя включен конденсатор 6. В момент размыкания цепи низкого напряжения конденсатор заряжается током самоиндукции, а затем при разомкнутых контактах разряжается через первичную обмотку.

Выключатель зажигания 8 необходим для остановки работающего двигателя размыканием первичной обмотки катушки зажигания. Он нужен и для включения зажигания перед пуском двигателя. Ключ 26 выключателя зажигания может занимать четыре положения : 0 — зажигания выключено ; 1 — зажигание включено ; 2 — включены зажигание и стартер ; 3 — подведено питание к радиоприемнику. В положении 0 ключ можно вставить и вынуть из замка зажигания. После пуска двигателя ключ выключателя зажигания переводят в положение 1.

Выключатель 18 цепи АКБ нужен для отключения батареи от массы при выполнении электротехнических работ и для остановки автомобиля на длительное время. Выключатель 18 защищает электрооборудование от короткого замыкания или от пожара при неисправной проводке, а также позволяет отключить батарею от всех потребителей электрической энергии, непосредственно не отсоединяя провода, отходящие от нее. В этом случае остается включенным аварийное освещение — плафон кабины и розетка переносной лампы.

Почему контактная система батарейного зажигания не используется на современных автомобилях?

Постепенно контактную систему батарейного зажигания вытеснили другие системы, такие как контактно транзисторная или бесконтактная системы зажигания . Этому предшествовало ряд недостатков контактной системы батарейного зажигания :

  • Быстрый износ и обгорание контактов прерывателя ;
  • Увеличение зазора между контактами прерывателя, соответственно увеличение угла опережения зажигания ;
  • Уменьшение тока в цепях низкого и высокого напряжения ;
  • Частые перебои с воспламенением рабочей смеси ;
  • Затрудненный пуск двигателя ;
  • Снижение экономичности и мощности двигателя.

Зажигается при помощи искры, которая образуется между электродами свечи зажигания.
Для образования искры необходимо напряжение не менее 12-16 кВ.
Образование тока высокого напряжения, а также его распределение по цилиндрам двигателя осуществляются приборами батарейного зажигания. Система батарейного зажигания включает в себя источник тока низкого напряжения, катушку зажигания, прерыватель распределитель, свечи зажигания, конденсатор, провода высокого и низкого напряжения, включатель зажигания.

Система батарейного зажигания включает в себя цепь высокого напряжения и цепь низкого напряжения. Цепь низкого напряжения питается от аккумуляторной батареи или от генератора. Кроме источников тока в эту цепь последовательно включены включатель зажигания, прерыватель, а также первичная обмотка катушки зажигания с добавочным резистором. Все эти элементы соединяются между собой проводами низкого напряжения. Цепь высокого напряжения включает в себя: вторичную обмотку катушки зажигания, провода высокого напряжения, свечи зажигания, а также распределитель.
Образование тока высокого напряжения происходит в катушке зажигания. Оно основано на принципе самоиндукции. При включенном зажигании и сомкнутых контактах прерывателя электрический ток от генератора или от аккумуляторной батареи поступает на первичную обмотку катушки зажигания, в результате этого вокруг нее возникает электромагнитное поле. При размыкании контактов прерывателя ток в первичной обмотке пропадает, и магнитный поток вокруг нее также исчезает. Исчезающий магнитный поток пересекает витки первичной и вторичной обмотки катушки зажигания, в результате чего в каждой из них возникает ЭДС. Благодаря большому числу последовательно соединенных между собой витков вторичной обмотки общее напряжение на ее концах достигает 20-24 кВ.

От катушки зажигания ток высокого напряжения через провода высокого напряжения и распределитель поступает к свечам зажигания. В результате этого между электродами свечей зажигания образовывается электрический разряд, который воспламеняет рабочую смесь в камерах сгорания.
ЭДС самоиндукции в первичной обмотке катушки зажигания достигает 200-300 В. Благодаря этому исчезновение магнитного потока замедляется и появляется искра между контактами прерывателя. Для того чтобы предотвратить появление искры между контактами прерывателя, параллельно контактам устанавливают конденсатор.

Катушка зажигания , преобразующая ток низкого напряжения в ток высокого напряжения состоит из:
1) сердечника;
2) первичной обмотки, которая включает в себя 250-400 витков изолированного медного провода диаметром 0,8 мм;
3) вторичной обмотки, которая включает в себя 19-25 тыс. витков изолированного провода диаметром 0,1 мм;
4) картонной трубки;
5) железного корпуса с магнитопроводами;
6) карболитовой крышки;
7) клемм и добавочного резистора.

Вторичная обмотка катушки зажигания находится под первичной обмоткой и отделяется от нее слоем изоляционного материала. Концы первичной обмотки выводятся на клеммы карболитовой крышки.
Сердечник катушки зажигания изготавливают из отдельных изолированных друг от друга полосок трансформаторной стали. Такая конструкция позволяет уменьшить образование вихревых токов. Нижний конец сердечника устанавливается в фарфоровый изолятор. Внутренние полости катушки трансформации заполняются трансформаторным маслом.

Добавочный резистор катушки зажигания состоит из спирали, керамических гнезд и двух шин. Сопротивление дополнительного резистора колеблется от 0,7 до 20 Ом. Один конец резистора соединяется с клеммой ВК при помощи шины, а другой конец соединяется клеммой ВКВ.
При небольшой частоте вращения коленчатого вала двигателя контакты прерывателя в течение длительного времени находятся в замкнутом состоянии. В результате этого происходит возрастание силы тока в первичной цепи, резистор начинает нагреваться, и в катушку зажигания поступает электрический ток небольшой силы, тем самым катушка предохраняется от перегрева.
Для того чтобы постоянно индуцировать во вторичной обмотке катушки зажигания ток высокого напряжения, необходимо периодически размыкать первичную цепь системы батарейного зажигания. Для этого служит прерыватель. Кроме этого вырабатываемое катушкой зажигания высокое напряжение необходимо распределять по цилиндрам двигателя согласно порядку их работы, эту функцию выполняет распределитель. Для более удобного обслуживания, а также для упрощения конструкции системы зажигания распределитель и прерыватель объединены в один прибор — прерыватель-распределитель.

Прерыватель устанавливается на двигателе автомобиля и приводится в действие от распределительного вала. На контакты прерывателя наплавлен тонкий слой вольфрама. Прерыватель состоит из:
1) приводного вала;
2) корпуса;
3) подвижного и неподвижного дисков;
4) центробежного и вакуумного регуляторов опережения;
5) октан-корректора;
6) кулачка с выступами.

Количество выступов на кулачке равно числу цилиндров двигателя . Кулачок через центробежный регулятор соединен с приводным валиком. Параллельно контактам прерывателя включен конденсатор, который не допускает искрения на контактах, а также приводит к быстрому исчезновению тока в первичной цепи. Благодаря этому напряжение во вторичной цепи значительно повышается. Конденсатор состоит из лакированной бумаги, на которую наносится слой цинка и олова. Такая бумага сворачивается в рулон и служит обкладкой конденсатора. К торцам рулона припаяны гибкие проводники. Рулон оборачивается кабельной бумагой и пропитывается маслом. Конденсатор крепится на подвижном диске или снаружи на корпусе прерывателя.
Емкость конденсатора составляет 0,17-0,2 мкФ. Конденсаторы из металлизированной бумаги могут самовосстанавливаться при пробое диэлектрика за счет заполнения отверстия маслом.

Кроме этого на работу системы батарейного зажигания большое влияние оказывает зазор между контактами прерывателя. Нормальная работа системы батарейного зажигания возможна при зазоре между контактами прерывателя в пределах от 0,35 до 0,45 мм.
При большом зазоре время замкнутого состояния конденсатора уменьшится, и сила тока в первичной обмотке катушки зажигания не успеет возрасти до требуемой величины. В результате этого ЭДС вторичной цепи не будет достаточно высокой. Кроме этого при большом зазоре и при высокой частоте вращения коленчатого вала будут возникать перебои в работе двигателя.

Рекомендуется к прочтению  Выставить зажигание на автомобиле ока

При небольшом зазоре происходит сильное искрение между контактами прерывателя, и в результате этого возникают перебои на всех режимах работы двигателя. Зазор между контактами прерывателя регулируют перемещением пластины со стойкой неподвижного контакта.
Распределитель устанавливается на корпусе прерывателя и состоит из ротора и крышки. Ротор изготовлен из карболита и имеет форму грибка. Сверху в ротор вмонтирована контактная пластина. Ротор крепится на выступе кулачка. Крышка распределителя также делается из карболита. На наружной части крышки ротора по окружности расположены гнезда по числу цилиндров. В гнезда вставляют провода, которые присоединяются к свечам зажигания. Кроме этого в крышке распределителя размещается центральное гнездо, которое предназначено для крепления провода высокого напряжения от катушки зажигания. Внутри распределителя напротив каждого гнезда находятся боковые контакты. В центре внутренней части распределителя находится угольный контакт с пружиной, который предназначен для соединения центрального гнезда с пластиной ротора.

Крышка закрепляется на корпусе ротора при помощи двух пружинных защелок. Ротор, вращаясь вместе с кулачком, соединяет центральный контакт поочередно со всеми боковыми платанами, при этом цепь высокого напряжения замыкается, и электрический ток поступает в свечи зажигания тех цилиндров, где в данный момент должно происходить воспламенение рабочей смеси.

Свеча зажигания состоит из центрального электрода с изолятором, а также стального корпуса, в котором он крепится. Корпус свечи зажигания имеет нарезную верхнюю часть, благодаря которой свеча вворачивается в нарезное отверстие головки цилиндров двигателя автомобиля. В нижней части корпуса имеется один боковой электрод. В верхней части корпус свечи имеет грани под ключ. Центральный электрод с изолятором завальцован в корпусе свечи. На центральном электроде сверху расположен наконечник для крепления провода высокого напряжения.
Для нормальной работы свечи зажигания необходимо, чтобы температура нижней части изолятора была в пределах от 500 до 600 °С. При такой температуре сгорает нагар, и свеча очищается. Чрезмерный нагрев свечи зажигания приводит к разрушению изолятора, а в результате переохлаждения на свечах зажигания скапливается моторное масло и нагар.

Как работает батарейная система зажигания?

Второй, наиболее распространённой системой является батарейная система зажигания. В этом случае электропитание осуществляется от автомобильной аккумуляторной батареи, а когда двигатель работает — электроэнергию вырабатывает автомобильный генератор, подключенный параллельно аккумулятору.

Это наиболее простая и часто применяемая система зажигания карбюраторного двигателя. Она состоит из:

  • катушки зажигания;
  • прерывателя-распределителя 4;
  • свечей 1 (зажигания);
  • выключателя зажигания.

Система зажигания получает питание от аккумуляторной батареи 10 или генератора, включаемого в схему параллельно батарее (схема подключения генератора и стартера приведена на рисунке).

Система зажигания служит для обеспечения воспламенения горючей смеси в цилиндрах двигателя в нужный момент и изменения момента зажигания (угла опережения зажигания) в зависимости от частоты вращения вала и нагрузки двигателя. В системе батарейного зажигания имеются цепи низкого и высокого напряжения.

В цепь низкого напряжения кроме источников тока входят прерыватель тока низкого напряжения, первичная обмотка катушки зажигания с добавочным сопротивлением и выключатель зажигания.

Цепь высокого напряжения содержит вторичную обмотку индукционной катушки зажигания, распределитель тока высокого напряжения по свечам, провода высокого напряжения и свечи зажигания. Прерыватель и распределитель объединены в одном устройстве — прерывателе-распределителе.

Рис. Схема батарейного зажигания:
а — расположение приборов; б — цепи низкого и высокого напряжения; 1 — свечи зажигания; 2, 15 — помехоподавляющие резисторы; 3, 9 — провода высокого и низкого напряжения соответственно; 4 — прерыватель-распределитель; 5 — конденсатор; 6 — катушка зажигания; 7 — добавочный резистор; 8 — выключатель (замок) зажигания; 10 — аккумуляторная батарея; 11 — реле включения стартера; 12 — стартер; 13 — крышка распределителя; 14 — ротор; 16 — кулачок; 17 — контакты; 18 — рычажок; 19 — клемма прерывателя; 20, 21 — первичная и вторичная обмотки соответственно; ВК,BK—Б — клеммы катушки зажигания; VA — вольтамперметр

При замкнутых контактах 17 и включенном выключателе 8 зажигания в цепи низкого напряжения течет ток силой I1. Из-за значительной индуктивности катушки 6 I1 нарастает до некоторого установившегося значения не мгновенно, а в течение определенного промежутка времени. Быстрому нарастанию силы тока препятствует ЭДС самоиндукции катушки. В момент размыкания контактов сила тока быстро падает до нуля, а созданное им магнитное поле исчезает. В результате исчезновения (уменьшения) магнитного поля во вторичной обмотке индуцируется ЭДС, которая будет тем выше, чем больше скорость уменьшения магнитного потока.

Таким образом, в момент изменения магнитного силового поля ЭДС возникает в витках не только вторичной, но и первичной обмотки 20 катушки зажигания. Это явление называется самоиндукцией. Ток самоиндукции замедляет процесс исчезновения тока в первичной обмотке, что нежелательно, так как в момент размыкания контактов возникает искра, вызывающая их подгорание. В результате снижаются эффективность и надежность системы зажигания. С целью устранения искрообразования параллельно контактам прерывателя подключают конденсатор. В момент размыкания цепи низкого напряжения он заряжается током самоиндукции, а при замыкании контактов разряжается через первичную обмотку.

Добавочный резистор служит для автоматического поддержания постоянной силы тока в первичной обмотке при изменении частоты вращения двигателя. При его пуске катушка зажигания питается от аккумуляторной батареи, напряжение которой понижено вследствие потребления стартером тока большой силы. Пониженное напряжение на катушке зажигания приводит к снижению силы тока I1 и напряжения вторичной обмотки. Для устранения этого явления при пуске двигателя добавочный резистор закорачивается контактами реле включения стартера или тягового реле. Поэтому, несмотря на снижение напряжения аккумуляторной батареи, первичная обмотка катушки зажигания получает необходимое для ее нормальной работы напряжение.

Свеча зажигания служит для воспламенения рабочей смеси в камере сгорания карбюраторного двигателя за счет искрового разряда. Она имеет стержень с центральным электродом, отделенный от «массы» изолятором, и боковой электрод, соединенный через корпус свечи с «массой». Свечи зажигания вворачивают в головку блока цилиндров. Поскольку максимальное давление в цилиндре весьма значительно, под свечи подкладывают уплотнительные шайбы.

Изолятор свечи выполнен из материала (уралит, кристалло-борокорунд и др.), выдерживающего напряжение не менее 30 кВ. Свечи изготавливают с разными тепловыми свойствами. Калильное число характеризует способность свечи работать без «калильного зажигания» смеси, когда последняя воспламеняется не от электрической искры между электродами свечи, а от контакта с раскаленными электродами. Чем выше это число, тем надежнее свеча будет работать в двигателе с высокой степенью сжатия. Калильные числа имеют следующие значения: 8, 11, 14, 17, 20, 23 и 26.

Катушка зажигания предназначена для преобразования тока низкого напряжения в ток высокого напряжения и состоит из стального корпуса, сердечника, собранного из листов трансформаторного железа, изолированных друг от друга и помещенных в картонную трубку. На эту трубку навита сначала вторичная обмотка, состоящая из большого числа (18 000—20 000) витков медной проволоки диаметром около 0,1 мм, а затем через слой изоляционной бумаги — первичная обмотка (содержащая около 300 витков проволоки диаметром 0,7…0,85 мм). Концы первичной обмотки выведены к клеммам крышки. Внутри катушки к первичной обмотке подсоединен один конец вторичной обмотки, а ее другой конец подведен к центральной клемме катушки. Сердечник с обмотками закрепляется в корпусе катушки с помощью изоляторов. Пространство между обмоткой, изоляторами и корпусом залито специальной мастикой, защищающей обмотки от проникновения влаги.

Прерыватель-распределитель предназначен для периодического размыкания цепи низкого напряжения и распределения возникающего во вторичной обмотке тока высокого напряжения по свечам цилиндров двигателя в необходимой последовательности. Прерыватель-распределитель снабжен центробежным и вакуумным регулятором.

Центробежный регулятор служит для изменения угла опережения зажигания в зависимости от частоты вращения коленчатого вала двигателя.

Вакуумный регулятор, предназначенный для изменения угла опережения зажигания в зависимости от нагрузки двигателя, т.е. степени открытия дроссельной заслонки, работает независимо от центробежного регулятора.

Октан-корректор, имеющийся в прерывателе-распределителе, служит для ручной регулировки угла опережения зажигания в зависимости от сорта применяемого топлива (его октанового числа). Октан-корректор позволяет изменять угол опережения зажигания в пределах ± 12° по углу поворота коленчатого вала двигателя. Изменение угла осуществляется при помощи специальных гаек поворотом корпуса прерывателя-распределителя относительно ведущего валика и контролируется по шкале со стрелкой. После регулировки угла устанавливают крепящие болты и регулировочные гайки.

При повороте корпуса прерывателя по часовой стрелке, т.е. в направлении вращения кулачка, угол опережения зажигания уменьшается (что обеспечивает более позднее зажигание). Угол опережения зажигания необходимо уменьшить, если сгорание топлива с малым октановым числом сопровождается детонацией.

Принцип работы батарейной системы зажигания

Такая электромеханическая система служит для выработки импульсов высокого напряжения, образующих искру между электродами свечей зажигания, синхронизации этих импульсов с фазой работы двигателя и распределения высоковольтных импульсов по цилиндрам двигателя в необходимой последовательности.

Принципиальная электрическая схема классической батарейной системы зажигания представлена на рис. 4.1.

Рис. 4.1 Принципиальная электрическая схема классической батарейной системы зажигания: 1 — аккумуляторная батарея; 2 — замок зажигания; 3 — прерыватель; 4 — катушка зажигания; 5 — добавочный резистор (вариатор) с замыкателем; 6 — распределитель; 7 — свечи зажигания.

Пунктирными линиями обозначены параметры нагрузки вторичной цепи: С2 — распределенная емкость вторичной цепи; Rш — шунтирующее сопротивление, обусловленное нагарообразованием на свече.

Конструктивно прерыватель тока 3 объединен с высоковольтным распределителем 6 в единый прибор — распределитель зажигания, на корпусе которого обычно установлен и искрогасительный конденсатор С1. Кулачок прерывателя и ротор распределителя расположены на общем валике, который вращается в два раза медленнее коленчатого вала двигателя.

Катушка зажигания 4 представляет собой трансформатор с сердечником, собранным из отдельных пластин, на котором намотана первичная обмотка w1, содержащая небольшое число витков толстого провода, и вторичная обмотка w2, состоящая из большого числа витков очень тонкого провода.

Катушка зажигания выполнена по автотрансформаторной схеме, что упрощает конструкцию, а также несколько увеличивает вторичное напряжение.

Добавочный резистор 5 (вариатор) ограничивает силу тока в первичной цепи и предохраняет катушку зажигания от тепловых перегрузок. При пуске двигателя на период включения стартера замыкатель закорачивает резистор 5, что приводит к уменьшению сопротивления первичной цепи катушки зажигания. Этим компенсируется снижение напряжения аккумуляторной батареи при работе стартера.

Принцип работы батарейной системы зажигания заключается в следующем. При вращении кулачка распределителя контакты прерывателя 3 попеременно замыкаются и размыкаются. После их замыкания через первичную обмотку w1 катушки зажигания 4 протекает ток, нарастающий от нуля по экспоненциальному закону. Этот ток определяется временем замкнутого состояния контактов и параметрами первичной цепи.

При малых оборотах двигателя ток в первичной обмотке успевает возрасти до максимального значения (Iр = Iмакс), а на больших оборотах вследствие уменьшения амплитуды первичного тока (тока разрыва) он значительно снижается.

Протекая через первичную обмотку, ток вызывает образование магнитного потока в сердечнике катушки зажигания и накопление электромагнитной энергии, которая равна:

Поскольку скорость нарастания первичного тока достаточно мала, ЭДС, наводимая во вторичной обмотке катушки зажигания в этот момент, также мала (1,5- 2 кВ), и пробоя искрового промежутка свечи не происходит.

При размыкании контактов прерывателя первичный ток резко уменьшается, что приводит к исчезновению магнитного потока в катушке зажигания. Уменьшающийся магнитный поток, пересекая витки первичной обмотки, наводит в ней ЭДС самоиндукции, которая задерживает моментальное исчезновение тока в первичной цепи. Длительность задержки тока пропорциональна индуктивности L1 первичной обмотки катушки зажигания. Кроме того, благодаря постепенному размыканию контактов прерывателя поддерживаемый в первичной обмотке ток в течение некоторого времени продолжает протекать через дугу, образовавшуюся в зазоре между контактами. Это явление приводит к разрушению контактов и к дополнительному затягиванию тока, что эквивалентно уменьшению скорости исчезновения магнитного потока в первичной обмотке.

Для предохранения контактов прерывателя от дугового разряда параллельно им включен конденсатор С1. В момент размыкания контактов прерывателя во вторичной обмотке индуцируется высокое напряжение U 2 макс» достигающее амплитуды 15-26 кВ.

В тот момент когда это напряжение достигает величины пробивного напряжения свечи зажигания, происходит искровой разряд. Длительность его в первом приближении зависит от количества энергии WL, накопленной в первичной обмотке катушки зажигания, и обычно имеет величину 1-3 мс. Далее контакты прерывателя замыкаются, весь цикл работы повторяется, и рабочая смесь воспламеняется уже в следующем цилиндре. Вторичное напряжение уменьшается при увеличении оборотов двигателя (и числа его цилиндров) из-за уменьшения величины тока разрыва Iр вследствие сокращения времени замкнутого состояния контактов прерывателя. Это первый принципиальный недостаток батарейной системы зажигания.

Снижение вторичного напряжения Us макс наблюдается и при малых оборотах двигателя, хотя теоретически в соответствии с последним уравнением оно должно было бы оставаться постоянным, поскольку при малых оборотах двигателя ток разрыва достигает установившегося значения. Это снижение объясняется дуговым paзрядом между контактами прерывателя вследствие уменьшения скорости размыкания контактов.

В этом случае напряжение на контактах возрастает быстрее, чем увеличивается электрическая прочность междуконтактного пространства.

Дугообразование на контактах прерывателя и снижение вторичного напряжения при малых оборотах двигателя — второй принципиальный недостаток батарейной системы зажигания. Напряжение U2макс значительно снижается и при загрязнении свечей зажигания. Дело в том, что параллельно искровому промежутку образуются токопроводящие мостики из нагара, создающие шунтирующее сопротивление Rш, по которому протекает часть вторичного тока. Величина Rш обычно находится в пределах 3-6 МОм.

При сильно загрязненных свечах (Rш 0,25-0,5 МОм) утечки и вызываемые ими потери могут настолько уменьшить напряжение U2макс, что оно станет ниже пробивного напряжения свечи и воспламенения рабочей смеси в цилиндре не произойдет. Напряжение U2макс уменьшается и с увеличением емкости вторичной цепи С2.

Снижение вторичного напряжения при уменьшении RШ и увеличении С2 является третьим принципиальным недостатком батарейной системы зажигания.

Из выше рассмотренной формулы вытекает, что величина вторичного напряжения прямо пропорциональна току разрыва. Однако увеличение этого тока ограничивается электроэрозионной стойкостью контактов прерывателя. Все современные системы батарейного зажигания имеют ток разрыва не более 4-4,5 А. Но и при таком токе контакты прерывателя настолько сильно нагружены, что на восьмицилиндровых двигателях, например, их хватает всего на 30-40 тыс. км пробега.

Степень влияния коэффициента трансформации w2/w1 на величину U2макс зависит от шунтирующего сопротивления Rш. При Rш =0,5 МОм увеличение коэффициента трансформации выше определенного значения не приводит к увеличению вторичного напряжения.

Наконец, величину U2макс казалось бы, можно увеличить, увеличивая индуктивность первичной обмотки L1. Однако на практике это неизбежно приводит к уменьшению тока разрыва при больших оборотах двигателя, а следовательно, к значительному уменьшению U2макс.

Все это позволяет заключить, что батарейная система зажигания достигла в своем развитии принципиального предела и дальнейшее существенное улучшение ее параметров не представляется возможным.

Сайт о внедорожниках, SUV, автомобилях повышенной проходимости

Классическая система батарейного зажигания с одной катушкой и многоискровым механическим распределителем до сих пор используется на некоторых автомобилях. Главным достоинством классической системы батарейного зажигания является ее простота, обеспечиваемая двойной функцией механизма распределителя. Прерывание цепи постоянного тока для генерирования высокого напряжения и синхронное распределение высокого напряжения по цилиндрам двигателя.

Устройство классической системы батарейного зажигания автомобилей, принцип работы, принципиальная схема, характеристики электрических сигналов, недостатки системы.

Классическая система батарейного зажигания состоит из следующих элементов:

— Источника тока — аккумуляторной батареи 1.
— Катушки зажигания (индукционной катушки) 2. Она преобразует ток низкого напряжения в ток высокого напряжения. Между первичной и вторичной обмотками имеет место автотрансформаторная связь.
— Прерывателя 3, содержащего рычажок 4 с подушечкой 5 из текстолита, поворачивающийся около оси.
— Контактов прерывателя 6.
— Кулачка 7, имеющего число граней, равное числу цилиндров.

Неподвижный контакт прерывателя присоединен к «массе». Подвижной контакт укреплен на конце рычажка. Если подушечка не касается кулачка, контакты замкнуты под действием пружины. Когда подушечка находит на грань кулачка, контакты размыкаются. Прерыватель управляет размыканием и замыканием контактов и моментом подачи искры.

— Конденсатора первичной цепи 8 (С1), подключенного параллельно контактам 6, который является составным элементом колебательного контура в первичной цепи после размыкания контактов.
— Распределителя 9, включающего в себя бегунок 10, крышку 11, на которой расположены неподвижные боковые электроды 12 (число которых равно числу цилиндров двигателя) и неподвижный центральный электрод, который подключается через высоковольтный провод к катушке зажигания.

Принципиальная схема классической системы батарейного зажигания автомобилей.

Боковые электроды через высоковольтные провода соединяются с соответствующими свечами зажигания. Высокое напряжение к бегунку 10 подается через центральный электрод с помощью скользящего угольного контакта. На бегунке имеется электрод 13, который отделен воздушным зазором от боковых электродов 12.

Бегунок 10 распределителя и кулачок 7 прерывателя находятся на одном валу, который приводится во вращение зубчатой передачей от распределительного вала двигателя с частотой вдвое меньшей частоты вращения коленчатого вала. Прерыватель и распределитель расположены в одном аппарате, называемом распределителем зажигания.

— Свечей зажигания 15, число которых равно числу цилиндров двигателя.
— Выключателя зажигания 16.
— Добавочного резистора 17 (Rд), который уменьшает тепловые потери в катушке зажигания. Дает возможность усилить зажигание. При пуске двигателя резистор шунтируется контактами реле 18 одновременно с включением стартера. Добавочный резистор изготовляют из нихрома или константана и наматывают на керамический изолятор.

Принцип работы классической системы батарейного зажигания автомобилей.

При вращении кулачка 7 контакты 6 попеременно замыкаются и размыкаются. После замыкания контактов (в случае замкнутого выключателя 16) через первичную обмотку катушки зажигания 2 протекает ток, нарастая от нуля, до определенного значения за данное время замкнутого состояния контактов. При малых частотах вращения валика 14 распределителя 9 ток может нарастать до установившегося значения, определенного напряжением аккумуляторной батареи и омическим сопротивлением первичной цепи (установившийся ток).

Протекание первичного тока вызывает образование магнитного потока, сцепленного с витками первичной и вторичной обмоток, и накопление электромагнитной энергии. После размыкания контактов прерывателя, как в первичной, так и во вторичной обмотке индуцируется ЭДС самоиндукции. Согласно закону индукции вторичное напряжение тем больше, чем быстрее исчезает магнитный поток, созданный током первичной обмотки, больше первичный ток в момент разрыва и больше число витков во вторичной обмотке.

Характеристики электрических сигналов в первичной и вторичной цепях классической системы батарейного зажигания автомобилей.

В результате переходного процесса во вторичной обмотке возникает высокое напряжение, достигающее 15-20 кВ. В первичной обмотке также индуцируется ЭДС самоиндукции, достигающая 200-400 В, направленная в ту же сторону, что и первичный ток, и стремящаяся задержать его исчезновение. При отсутствии конденсатора 8 ЭДС самоиндукции вызывает образование между контактами прерывателя во время их размыкания сильной искры или, точнее, дуги.

При наличии конденсатора 8 ЭДС самоиндукции создает ток, заряжающий конденсатор. В следующий период времени конденсатор разряжается через первичную обмотку катушки и аккумуляторную батарею. Таким образом, конденсатор 8 практически устраняет искрообразование в прерывателе, обеспечивая долговечность контактов и индицирование во вторичной обмотке достаточно высокой ЭДС. Вторичное напряжение подводится к бегунку распределителя, а затем через электроды в крышке и высоковольтные провода поступает к свечам соответствующих цилиндров.

Рабочий процесс классической системы батарейного зажигания автомобилей.

Нормальным рабочим режимом любой классической системы батарейного зажигания, использующей индукционную катушку в качестве источника высокого напряжения, является переходный режим. В результате чего образуется искровой разряд в свече зажигания. Рабочий процесс может быть разбит на три этапа:

Замыкание контактов прерывателя — первый этап рабочего процесса классической системы батарейного зажигания.

На этом этапе происходит подключение первичной обмотки катушки зажигания (накопителя) к источнику тока. Этап характеризуется нарастанием первичного тока и, как следствие этого, накоплением электромагнитной энергии, запасаемой в магнитном поле катушки.

Размыкание контактов прерывателя — второй этап рабочего процесса классической системы батарейного зажигания.

Источник тока отключается от катушки зажигания. Первичный ток исчезает, в результате чего накопленная электромагнитная энергия превращается в электростатическую. Возникает ЭДС высокого напряжения во вторичной обмотке.

Пробой искрового промежутка свечи зажигания — третий этап рабочего процесса классической системы батарейного зажигания.

В рабочих условиях при определенном значении напряжения происходит пробой искрового промежутка свечи зажигания с последующим разрядным процессом.

Недостатки классической системы батарейного зажигания автомобилей.

Классическая система батарейного зажигания обладает рядом достоинств. К ним следует отнести простоту конструкции и невысокую стоимость аппаратов зажигания, возможность регулирования угла опережения зажигания в широких пределах без изменения величины вторичного напряжения. Вместе с тем классическая система батарейного зажигания имеет ряд принципиальных недостатков, связанных с работой механического прерывателя и механических автоматов опережения зажигания:

— Недостаточная величина вторичного напряжения на высоких и низких частотах вращения коленчатого вала двигателя. Как следствие, малый коэффициент запаса по вторичному напряжению. Особенно для многоцилиндровых и высокооборотных двигателей, а также при экранировке высоковольтных проводов.
— Недостаточная энергия искрового разряда по причине ограничения уровня запасенной энергии в первичной цепи.
— Чрезмерный нагрев катушки зажигания в зоне низких частот вращения коленчатого вала двигателя и особенно при остановившемся двигателе. Если замок зажигания включен и контакты прерывателя замкнуты.
— Нарушение рабочего зазора в контактах в процессе эксплуатации. Как следствие этого, необходимость зачистки контактов, т. е. систематический уход во время эксплуатации.
— Низкий срок службы контактов прерывателя.
— Повышенный асинхронизм момента искрообразования по цилиндрам двигателя при эксплуатации вследствие износа кулачка.
— Высокая погрешность момента искрообразования вследствие разброса характеристик механических автоматов опережения в процессе эксплуатации.

Перечисленные недостатки классической системы батарейного зажигания приводят в итоге к ухудшению процесса сгорания рабочей смеси. И следовательно, к потере мощности двигателя и увеличению эмиссии отработавших газов.

По материалам книги «Справочник по устройству, применению и ремонту электронных приборов автомобилей».
Ходасевич А. Г., Ходасевич Т. И.

Батарейные системы зажигания

Система зажигания с маховичным генератором (магдино) (до появления электронного управления), не позволяла достичь необходимого диапазона изменения опережения зажигания для получения удовлетворительных характеристик во всем диапазоне частот вращения двигателя. Это связано с тем, что момент размыкания контактов соответствовал бы периоду времени, когда обмотка питания не обеспечивает максимальной энергоотдачи, так что было необходимо другое (постоянное) питание.

Новым источником питания служила не обмотка, а основная система электрооборудования машины. Упомянув передовые конструкции больших машин, которым необходима более существенное и стабильное питание, как для зажигания, так и для освещения, переходим к рассмотрению батарейной системы. В батарейной системе маховичный генератор заменяется более существенным генератором переменного тока (альтернатором), при этом вырабатываемый им переменный ток выпрямляется (преобразуется в постоянный ток, DC) и регулируется (поддерживается в определенных пределах) так, чтобы соответствовать предъявляемым к нему требованиям. Батарея выполняет функцию накопителя энергии для поддержания постоянного энергоснабжения при низких частотах вращения и не работающем двигателе. В этом преимущество батареи, требующей системы электрооборудования постоянного тока.

Принцип действия [ править | править код ]

Батарейная система зажигания

Батарейная система зажигания работает аналогично системе с маховичным генератором, но имеет ряд значительных отличий. Питание от батареи поступает к первичным обмоткам катушки зажигания, дополняют цепь замкнутые контакты прерывателя. Они присоединяются к катушке зажигания

последовательно, а не параллельно ей, как это выполнено в системе с маховичным генератором.

Магнитное поле, генерируемое в первичной обмотке, поддерживается до тех пор. пока кулачок не разомкнет контакты прерывателя. Как только это происходит, прерывается питание первичной обмотки, поле исчезает, и во вторичной обмотке индуцируется высоковольтный импульс, вызывающий образование искры. Включенный в схему конденсатор выполняетту же самую функцию, что и в системе зажигания с маховичным генератором. Принцип действия такой системы носит название «исчезающего поля».

Управление опережением зажигания [ править | править код ]

При подаче на катушку зажигания постоянного, стабилизированного напряжения появляется теоретическая возможность получения искры в любой точке цикла двигателя. Для осуществления этого на практике необходима система изменения угла опережения зажигания (или момент воспламенения).

Ручной механизм управления опережением зажигания

Управление первыми системами производилось вручную, при помощи рычага на руле, позволяющего уменьшать опережение при запуске или низких частотах вращения и увеличивать опережение, когда это требуется, при возрастании частоты вращения двигателя. На простых одноцилиндровых четырехтактных двигателях это устройство работало достаточно эффективно (заставляя мотоциклиста не забывать об уменьшении опережения зажигания перед запуском, чтобы избежать сильной обратной отдачи педали кик-стартера в ногу). Но на более сложных многоцилиндровых двигателях стало очевидно, что необходима система постоянной автоматической регулировки опережения зажигания, поэтому был создан автоматический регулятор опережения зажигания (ATU).

К главным недостаткам батарейной системы зажигания можно отнести то, что запуск двигателя зависит от степени заряженности батареи, а также присутствие большого количества подвижных частей. Это означает, что износ, происходящий в большинстве узлов системы, требует регулярного обслуживания для поддержания ее эффективной работы.

Это необходимо и из-за улучшения конструкции двигателя, позволяющей достигать более высоких частот вращения двигателя и применять повышенные степени сжатия. Высокие частоты вращения двигателя означают увеличение износа подвижных узлов контактного прерывателя и нарушение точности из-за центробежной силы, благодаря которой контакты расходятся на величину, превышающую необходимую. При увеличении степени сжатия для образования искры требуется более высокое напряжение, а высокие напряжения приводяткподгораниюповерхностейконтактов прерывателя. Для дальнейшего повышения точности необходимо устранить все возможные механические узлы системы. С этой задачей справляется электронное зажигание.

Система батарейного зажигания

Какое назначение системы зажигания на автомобиле?

Система зажигания на автомобиле служит для преобразования низкого напряжения (12 В) в высокое напряжение (15-24 тыс. В) и подвода его в виде искры в цилиндры карбюраторного или газового двигателя с целью воспламенения сжатой горючей смеси в соответствии с порядком работы двигателя.

Какая система зажигания может использоваться на двигателях?

На автомобильных карбюраторных и газовых двигателях может использоваться батарейная, контактно-транзисторная, транзисторная системы зажигания и зажигание от магнето. Наибольшее распространение получила батарейная и контактно-транзисторная системы зажигания.

Что входит в устройство батарейной системы зажигания?

Система батарейного зажигания (рис.92) состоит из аккумуляторной батареи как источника тока низкого напряжения (12 В); катушки зажигания 5 с первичной и вторичной обмотками и резистором 6, преобразующей ток низкого напряжения (12 В) в ток высокого напряжения (24 тыс. В); прерывателя 4 с подвижным и неподвижным контактами тока низкого напряжения; кулачковой муфты с кулачками для прерывания (размыкания) цепи тока низкого напряжения в заданные моменты с тем, чтобы получить пульсирующий ток в первичной обмотке катушки зажигания. К корпусу прерывателя крепится вакуумный регулятор опережения зажигания; конденсатор 3, включенный параллельно контактам прерывателя и накапливающий токи самоиндукции в момент размыкания контактов прерывателя, предохраняя их от подгорания. В момент замыкания контактов конденсатор разряжается в направлении основного тока и таким путем способствует получению тока высокого напряжения во вторичной обмотке катушки зажигания; распределителя 12 с выводными клеммами 9 и токоразносной пластиной 11, предназначенной для распределения (разнесения) тока высокого напряжения по свечам зажигания в соответствии с порядком работы двигателя; свечей зажигания 1, ввернутых непосредственно в камеру сгорания цилиндра и предназначенных для образования электрической искры с целью воспламенения сжатой горючей смеси; провода высокого напряжения 1 с радио и телепомехоподавительными сопротивлениями 2; провода низкого напряжения с зажимами «АМ», «С», «ВК», «ВКБ», «К», «КЗ»; амперметра 8 или контрольной лампочки для контроля подзарядки батареи; выключателя (замка) 9 зажигания; тягового реле 10 стартера; октан-корректора.

Обычно распределитель 12 тока высокого напряжения является крышкой прерывателя и называется прерывателем-распределителем. Вал прерывателя приводится во вращение от винтовой шестерни распределительного вала.

Рис.92. Схема батарейного зажигания.

Как работает система батарейного зажигания?

Работает система батарейного зажигания так. При включенном замке зажигания (рис.92) и замкнутых контактах и прерывателя ток низкого напряжения пойдет от «–» аккумуляторной батареи по массе на корпус прерывателя и по замкнутым контактам и на выводную клемму, изолированную от «массы», далее по проводу на зажим и в первичную обмотку катушки зажигания 5, где создаст магнитное поле и через дополнительное сопротивление по проводу на замок зажигания 9, амперметр 8, зажим «К3» тягового реле стартера и на «+» батареи. Во время вращения коленчатого вала грань кулачковой муфты, воздействуя на опорную пятку рычажка подвижного контакта, отводит его от неподвижного, то есть размыкает контакты, электрическая цепь прерывается, ток исчезает, а магнитносиловые линии первичной обмотки пересекают витки вторичной обмотки, индуктируя в них ток высокого напряжения. Образовавшийся ток высокого напряжения идет по проводу высокого напряжения на центральную клемму распределителя и на токоразносную пластину 11, установленную на кулачковой муфте и вращающуюся вместе с валом прерывателя. При вращении токоразносной пластины она поочередно подходит к неподвижным клеммам распределителя, между которыми имеется небольшой зазор. Ток проходит через неподвижную клемму распределителя и по проводу высокого напряжения на центральный электрод свечи 1, из центрального на боковой электрод, соединенный с массой, в виде искры, так как между электродами свечи есть зазор 0,6-0,9 мм (батарейная система зажигания) или 1,1-1,2 мм (контактно-транзисторная система зажигания).

Искра воспламеняет сжатую горючую смесь в цилиндре двигателя. Далее ток по «массе» поступает на «–», по поверхности электролита на «+» батареи, амперметр, замок зажигания, дополнительное сопротивление и в первичную обмотку катушки зажигания, а из нее во вторичную, так как обмотки соединены. Количество граней на кулачковой муфте соответствует количеству цилиндров двигателя, что обеспечивает получение искры в каждом цилиндре.

Какие недостатки батарейной системы зажигания?

В батарейной системе зажигания через контакты прерывателя протекает ток большой силы, необходимый для создания магнитного поля в первичной обмотке катушки зажигания. Однако такой ток вызывает быстрое окисление (подгорание) и износ контактов. Окислившиеся контакты, повышают сопротивление первичной цепи, а перенос металла с подвижного контакта на неподвижный вызывает образование выступа (бугорка) на неподвижном контакте и впадины на подвижном. Зазор между контактами увеличивается, сила тока в первичной цепи снижается, вызывая уменьшение напряжения во вторичной цепи. Кроме того, увеличивается угол опережения зажигания. Поэтому затрудняется пуск и снижается мощность и экономичность двигателя. С увеличением частоты вращения коленчатого вала резко снижается сила тока низкого напряжения из-за непродолжительности нахождения контактов в замкнутом состоянии, в результате чего уменьшается напряжение во вторичной цепи, что вызывает перебои в зажигании горючей смеси в цилиндрах двигателя.

Указанных недостатков лишена транзисторная система зажигания, которая может быть контактной и бесконтактной. Особенность контактно-транзисторной системы зажигания состоит в том, что в ней через контакты прерывателя проходит только ток управления транзистором, величина которого всего 0,3-0,8 А, но не проходит рабочий ток низкого напряжения, величина которого достигает 8 А, что исключает окисление (подгорание) контактов, повышает надежность работы системы зажигания. В транзисторной системе зажигания напряжение во вторичной цепи на 25-30% больше по сравнению с батарейной системой зажигания, что позволяет увеличить зазор между электродами свечей до 1,2 мм и получить более длинную искру, входящую в соприкосновение с горючей смесью, что способствует более быстрому и полному сгоранию даже обедненной смеси. В результате облегчается пуск, улучшается приемистость и экономичность работы двигателя. Контакты прерывателя служат более продолжительное время.

Батарейная система зажигания автомобиля: Батарейная система зажигания | Система зажигания

Устройство контактной системы батарейного зажигания

Для создания искрового разряда между электродами свечи зажигания необходимо высокое напряжение (15000-30000 В), так как газы, находящиеся в цилиндре, не проводят ток низкого напряжения. На современных автомобильных двигателях применяют однопроводную систему соединения источников тока с потребителями. Вторым проводником электрической энергии служит масса (корпус) – все соединенные между собой металлические части автомобиля.

При однопроводной системе включения приборов электрооборудования уменьшается число проводов, упрощается техническое обслуживание и уменьшается стоимость системы. Отрицательные выводы генератора, аккумуляторной батареи и всех потребителей электроэнергии соединены с массой, а положительные изолированы от нее. В эксплуатации необходимо внимательно следить за состоянием изоляции на проводах и за их креплением, так как нарушение изоляции может привести к возникновению короткого замыкания .

Устройство контактной системы батарейного зажигания:

а) схема; б) положения ключа выключателя зажигания и стартера; 1 – рычажок прерывателя; 2 – подвижный контакт; 3 – неподвижный контакт; 4 — кулачок; 5 – прерыватель низкого напряжения; 6 — конденсатор; 7, 14, 23 – провода; 8 – выключатель зажигания; 9 – добавочный резистор; 10 – первичная обмотка; 11 – вторичная обмотка; 12 – катушка зажигания; 13 — магнитопровод; 15 – выключатель добавочного резистора; 16 — амперметр; 17 – аккумуляторная батарея (АКБ); 18 – выключатель электродом; 19 – ротор с электродом; 20 — распределитель; 21, 24 – подавительные резисторы; 25 – свеча зажигания; 26 – ключ выключателя зажигания.

Рекомендуется к прочтению  Плазменное Зажигание

Контактная система батарейного зажигания состоит из: аккумуляторной батареи 17, катушки зажигания 12, прерывателя 5 низкого напряжения с конденсатором 6, распределителя импульсов высокого напряжения 20, свечей зажигания 25, выключателя зажигания 8, амперметра 16. Прерыватель 5 имеет два контакта: неподвижный 3 соединенный с массой и подвижный 2, расположенный на рычажке 1 и соединенный с проводом 7 с первичной обмоткой 10 катушки зажигания. В прерывателе установлен вращающийся валик с кулачком 4, при помощи которого размыкаются контакты. В системе зажигания в качестве источника электрического тока используется генератор переменного тока.

При замыкании контактов прерывателя ток от АКБ проходит по первичной обмотке катушки зажигания, создавая вокруг нее магнитное поле.

Цепь низкого напряжения следующая: положительный вывод АКБ 17 – амперметр 16 – выключатель зажигания 8 добавочный резистор 9 – первичная обмотка 10 — провод 7 – подвижный контакт 2 – неподвижный контакт 3 – масса – выключатель 18 цепи АКБ – отрицательный вывод АКБ.

При размыкании контактов прерывателя обесточивается первичная обмотка катушки зажигания и резко уменьшается магнитное поле. Магнитный поток исчезающего поля пересекает витки вторичной и первичной обмоток, при этом индуктируется электродвижущая сила (ЭДС) высокого напряжения во вторичной и ЭДС самоиндукции в первичной обмотках. Возникающие во вторичной обмотке импульсы высокого напряжения подводятся к свечам зажигания в соответствии с порядком работы цилиндров двигателя. Вращающийся ротор 19 своим электродом распределяет импульсы высокого напряжения по электродам крышки распределителя. Частота вращения ротора в 2 раза меньше частоты вращения коленчатого вала и, таким образом, совпадает с частотой вращения кулачка прерывателя.

Положение пластины ротора напротив каждого из электродов крышки распределителя соответствует разомкнутому состоянию контактов прерывателя.

Цепь высокого напряжения: вторичная обмотка11 – провод 14 высокого напряжения – подавительный резистор 21 – электрод ротора 19 – один из электродов крышки распределителя 20 – провод 23 — подавительный резистор 24 – свеча зажигания 25 – центральный электрод свечи – боковой электрод свечи – масса – выключатель 18 цепи АКБ – отрицательный вывод АКБ 17 – положительный вывод АКБ 17 – амперметр 16 — выключатель зажигания 8 – добавочный резистор 9 – первичная обмотка 10 – вторичная обмотка катушки зажигания 12.

В первичной обмотке ток самоиндукции возникает при замыкании контактов прерывателя. Ток самоиндукции замедляет процесс исчезновения тока в первичной обмотке, нежелательно, так как при размыкании контактов увеличивается период искрообразования между ними, снижаются эффективность и надежность системы зажигания. Параллельно контактам прерывателя включен конденсатор 6. В момент размыкания цепи низкого напряжения конденсатор заряжается током самоиндукции, а затем при разомкнутых контактах разряжается через первичную обмотку.

Выключатель зажигания 8 необходим для остановки работающего двигателя размыканием первичной обмотки катушки зажигания. Он нужен и для включения зажигания перед пуском двигателя. Ключ 26 выключателя зажигания может занимать четыре положения: 0 – зажигания выключено; 1 – зажигание включено; 2 – включены зажигание и стартер; 3 – подведено питание к радиоприемнику. В положении 0 ключ можно вставить и вынуть из замка зажигания. После пуска двигателя ключ выключателя зажигания переводят в положение 1.

Выключатель 18 цепи АКБ нужен для отключения батареи от массы при выполнении электротехнических работ и для остановки автомобиля на длительное время. Выключатель 18 защищает электрооборудование от короткого замыкания или от пожара при неисправной проводке, а также позволяет отключить батарею от всех потребителей электрической энергии, непосредственно не отсоединяя провода, отходящие от нее. В этом случае остается включенным аварийное освещение – плафон кабины и розетка переносной лампы.

Постепенно контактную систему батарейного зажигания вытеснили другие системы, такие как контактно транзисторная или бесконтактная системы зажигания. Этому предшествовало ряд недостатков контактной системы батарейного зажигания:

  • Быстрый износ и обгорание контактов прерывателя;
  • Увеличение зазора между контактами прерывателя, соответственно увеличение угла опережения зажигания;
  • Уменьшение тока в цепях низкого и высокого напряжения;
  • Частые перебои с воспламенением рабочей смеси;
  • Затрудненный пуск двигателя;
  • Снижение экономичности и мощности двигателя.

Батарейная система зажигания — Энциклопедия по машиностроению XXL

Рис. 93- Схема батарейной системы зажигания

Батарейная система зажигания при установке ее на современные двигатели не может обеспечить надежной работы, так как она имеет ряд недостатков. [c.148]

Недостатком обычной батарейной системы зажигания является обгорание контактов прерывателя вследствие искрообразования в момент размыкания контактов. В результате этого увеличивается сопротивление контактов, а следовательно, уменьшается мощность искры в свечах зажигания. Обгорание контактов тем интенсивнее, чем больше сила тока в цепи первичной обмотки. Таким образом, для увеличения долговечности контактов приходится ограничивать силу тока. [c.119]

Датчик-распределитель выполнен по аналогии с распределителем батарейной системы зажигания, но контактный прерыватель заменен бесконтактным микроэлектронным датчиком (использован эффект Холла, заключающийся в возникновении поперечного электрического поля в пластинке полупроводника с током при действии на нее магнитного поля). [c.105]

Батарейная система зажигания используется в двигателях (например, автомобильных), в которых аккумуляторная батарея служит также для пуска, освещения и т. п,, а система зажигания от магнето — в двигателях (например, мотоциклетных), в которых требуется простота обслуживания, компактность и малая масса. При пуске и работе двигателя с малой частотой вращения мощность искры в системе батарейного зажигания не зависит от частоты вращения, что является преимуществом по сравнению с системой зажигания от магнето.

С ростом частоты вращения двигателя обычная батарейная система зажигания перестает удовлетворять требованиям эксплуатации (особенно многоцилиндровых двигателей). Уменьшение времени замкнутого состояния контактов, усиливающиеся с увеличением частоты вращения инерционные явления в системе и явления, обусловленные токами самоиндукции, существенно уменьшают напряжение на электродах свечи зажигания. Применение электронных приборов позволяет снизить силу тока в первичной цепи системы зажигания. Вследствие этого повышается надежность системы зажигания и стабильность ее работы в большом диапазоне изменения частоты вращения двигателя. [c.165]

Система зажигания от магнето отличается от батарейной системы зажигания тем, что все приборы, кроме проводов высокого напряжения и свечей зажигания, скомпонованы в одном агрегате — магнето. Ток в первичной цепи создается переменным магнитным потоком, возникающим в сердечнике катушки зажигания. Размыкание контактов первичной цепи происходит в тот момент, когда сила тока в этой цепи достигает максимума. [c.166]

На характерных осциллограммах цепей низкого (см. рис. 6.64, а) и высокого (см. рис. 6.64, б) напряжений батарейной системы зажигания карбюраторного двигателя отражен процесс за один рабочий период, которому соответствует 90° угла поворота кулачка распределителя зажигания для 4-цилиндрового, 60° — для 6-цилиндрового и 45° — для 8-цилиндрового двигателя. В точке О происходит размыкание контактов прерывателя. При этом во вторичной цепи за счет токов индукциИ напряжение и достигает 8—12 кВ, при котором происходит искровой пробой межэлектродного промежутка свечи. Участок О—1 отражает процесс горения искры, который поддерживается при напряжении порядка 1,0—1,5 кВ. В первичной цепи горение искры отражается затухающими колебаниями К, связанными с работой конденсатора. [c.181]

Назовите основные элементы батарейной системы зажигания. [c.245]

Система зажигания от магнето принципиально отличается от рассмотренной батарейной системы зажигания лишь тем, что ток низкого напряжения получается непосредственно в самом магнето и необходимость в других источниках тока низкого напряжения для зажигания отпадает. Получение тока низкого напряжения в магнето достигается изменением величины и направле- [c.404]

Наоборот, при батарейном зажигании напряжение на электродах свечи, а следовательно, и надежность зажигания уменьшаются с увеличением числа оборотов. Это объясняется тем, что с возрастанием числа оборотов уменьшается время нахождения прерывателя в замкнутом состоянии и снижается величина первичного тока к моменту размыкания контактов прерывателя. При запуске и на малых оборотах напряжение, получаемое в батарейной системе зажигания, значительно больше, чем у магнето. [c.412]

Батарейная система зажигания двигателя состоит из аккумулятора, генератора, распределителя зажигания, катушки, свечей, проводов и замка зажигания. Основным признаком неисправной работы зажигания является слабая искра. О мощности ее судят по величине меж-электродного промежутка, который она может преодолеть. При хорошем состоянии системы зажигания искра без перебоев преодолевает межэлектродный промежуток в 6—7 мм. [c.474]

Диаметр высоковольтной крышки распределителя значительно больше диаметра крышки распределителей зажигания обычной батарейной системы зажигания. Это объясняется следуюш.им худшими условиями работы бегунка при отсутствии мех анизма коррекции его положения относительно бокового электрода крышки в процессе работы центробежного автомата [c. 259]

Системы зажигания можно классифицировать на контактную, контактно-транзисторную, бесконтактную. Контактную систему часто называют батарейной системой зажигания, хотя в основном она питается от генератора, иногда ее называют классической. Системы зажигания можно также разделить в зависимости от того, в каком элементе системы накапливается энергия, которая затем преобразуется в искровой разряд между электродами свечи. По этому признаку все системы делят на два типа с накоплением энергии в магнитном поле (в индуктивности) и с накоплением энергии в электрическом поле (в емкости). [c.109]

Неисправности батарейной системы зажигания, способы их определения и устранения [c.115]

Схема наиболее распространенной батарейной системы зажигания представлена на рис. 65. Она состоит из следующих приборов источников тока низкого напряжения аккумуляторной батареи, генератора переменного или постоянного тока с реле-регулятором [c. 115]

V. На каких автомобилях установлена классическая батарейная система зажигания [c.25]

I. Прерыватель-распределитель батарейной системы зажигания состоит из. .. [c.26]

II. Прерыватель батарейной системы зажигания предназначен для прерывания цепи тока. .. [c.27]

Для воспламенения рабочей смеси в цилиндре от электрической искры необходимо напряжение 10000—15000 В. Ток такого напряжения распределяется по цилиндрам прибора системы зажигания карбюраторных двигателей (батарейной системы зажигания). [c.92]

Что относится к батарейной системе зажигания [c.98]

Фиг. 7-24. Типовая схема батарейной системы зажигания двигателя.

Батарейная система зажигания включает прерыватель-распределитель, катушку зажигания, свечи и провода. [c.191]

Батарейная система зажигания применяется в автомобильных и мотоциклетных двигателях, система зажигания от магнето в мотоциклетных, лодочных, тракторных, авиационных и стационарных двигателях. [c.166]

Транзисторная батарейная система зажигания [c.172]

Система зажигания от магнето представляет собой магнитоэлектрическую машину небольших габаритов — магнето высокого напряжения, в котором источник переменного электрического тока, трансформатор (индукционная катушка), прерыватель и распределитель выполнены в одном агрегате. Магнето характеризуется более надежной и долговечной работой, но конструкция его сложна и дороже батарейной системы зажигания. [c.122]

Батарейная система зажигания. [c.81]

Наиболее ответственным узлом, от которого зависит нормальная работа батарейной системы зажигания, является прерыватель. При размыкании его контактов в первичной обмотке катушки зажигания индуктируется эдс самоиндукции 200—300 В. Возникающий при этом между контактами ток в виде дугового разряда вызывает разрушение поверхности контактов, во избежание которого параллельно контактам подключается конденсатор. [c.26]

Электротехнические работы заключаются в проверке внешнего состояния источников электроэнергии (аккумуляторной батареи, генератора с реле-регулятором и выпрямителем переменного тока) и потребителей электроэнергии (приборов батарейной системы зажигания, стартера, прибрро в освещения и сигнализации и контрольных измерительных приборор), очистки от пыли, грязи и следов окисления контактных соединений, устранения неисправностей в результате диагностирования систем электрообо- рудования автомобиля. [c.108]

Наибольшее распространение имеет батарейная система зажигания, включающая прерыватель-распредё литель, катушку зажигания, свечи и провода.. [c.180]

Рабочая смесь в карбюраторном двигателе воспламеняется от электрической искры, возникающей между электродами свечи зажигания. Искровой промежуток в свече зажигания, который равен 0,5—0,8 мм, представляет собой часть электрической цепи со значительным сопротивлением для тока. Это сопротивление повышается с увеличением давления газов в цилиндре, для его преодоления необходимо напряжение 12—20 кВ. При появлении искры сопротивление между электродами снижается и повышается температура искры, которая превращается в дугу в виде искрового разряда. Искра воспламеняет небольшую часть горючей смеси у электродов свечн, затем фронт пламени распространяется по всей камере сгорания. При батарейном зажигании ток высокого напряжения получается в индукционной катушке зажигания трансформацией постоянного тока, поступающего в нее через прерыватель из источника тока. Схема батарейной системы зажигания показана на рис. 163. В эту систему входят источники тока (аккумуляторная батарея 8 и генератор /), катушка зажигания 3, прерыватель 2, распределитель 4, свечи зажи- [c.233]

Как указывалось в 33, особенность рабочей характеристики системы батарейного зажигания— снижение напряжения по мере увеличения числа оборотов двигателя — неблагоприятна для надежного обеспечения зажигания в быстроходных многоцилиндро-вых двигателях. Тенденция к постоянному росту степени сжатия и числа оборотов автомобильных двигателей усугубляет трудности, так как от системы зажигания требуется более высокое напряжение при большем числе оборотов двигателя. В связи с этим высказывались мнения, что возможности батарейной системы зажигания уже исчерпаны и она может тормозить дальнейшее усовершенствование авто мобильных двигателей. Это является одной из причин интенсивных поисков новых систем зажигания, свободных от указанного недостатка. [c.194]

Напряжение во вторичной цепи повышается примерно на 25% по сравнению с батарейной системой зажигания, что позволяет увеличить зазор между контактами свечи с 0,6—0,8 до 1,0—, 2мм. Вместе с этим увеличивается энергия искрового разряда и облегчается пуск двигателя и его приемистость. Срок службы свечей увеличивается на 20—30% Раслод топлива благодаря устойчивости работы системы зажигания снижается на 2% и более. [c.196]

В пос.чеднее время в связи с ростом числа оборотов двигателей обычная батарейная система зажигания перестает удовлетворять требованиям эксп. луатации (особенно многоцилиндровых двигателей). Уменьшение времени замкнутого состояния контактов, усиливающиеся с увеличением числа оборотов инерционные явления в систелге и явления, обусловленные токами самоиндукции, [c.172]

Принципиальная схема транзисторной батарейной системы зажигания иоказана на рис. 99. В момент разрыва контактов прерывателя к ним подводится только напряжение от батареи. Все выпускающиеся транзисторные приставки весьма просты по конструкции. Транзисторная батарейная система зажигания имеет по сравнению с системой зажигания без транзисторов следующие преимущества [c.173]

В систему зажигания газовых двигателей средне и oo. jbinoii мощности вводят приборы защиты. И )едпазначенные для остановки двигателя И1)И нарушении нормальш г условии его работы. Приборы зашиты автоматически отключают систему зажигания при превышении предельного значепня числа оборотов коленчато] о вала, температуры воды в системе охлаждения пли давления масла в циркуляционной масляной системе. При батарейной системе зажигания происходит разрыв )лектрической цепи, при питании от магнето замыкание ее на массу. [c.333]

Батарейная система зажигания, схема которой представлена на рис. 105, состоит из следующих приборов ка-тущки зажигания 2, прерывателя 8 тока низкого напряжения, распределителя тока 6, искровых зажигательных свечей 10, выключателя зажигания 1 и проводов низкого и высокого напряжения. [c.206]

На автомобилях ГАЗ-53А и ЗИЛ-130 применяется батарейная система зажигания. К системе зажигания относятся катущка зажигания, прерыватель — распределителе с конденсатором, провода высокого напряжения, свечи зажигания и включатель зажигания. Источником тока в цепи низкого напряжения системы зажигания [c.81]

В современных автомобилях наибольшее распространение получили батарейные системы зажигания, в которых первичным источником электрической энергии являются аккум) лято])ные батареи или генератор. Вырабатываемый ими ток низкого напряжения преобразуется затем в импульсы высокого иапг яжеиия Классическая схема батарейного зажигания на примере восьмицилиндрового двигателя показана на рис. 80. [c.150]

Батарейная система зажигания двигателя — Энциклопедия по машиностроению XXL

Батарейная система зажигания двигателя состоит из аккумулятора, генератора, распределителя зажигания, катушки, свечей, проводов и замка зажигания. Основным признаком неисправной работы зажигания является слабая искра. О мощности ее судят по величине меж-электродного промежутка, который она может преодолеть. При хорошем состоянии системы зажигания искра без перебоев преодолевает межэлектродный промежуток в 6—7 мм. [c.474]
Батарейная система зажигания двигателя [c.309]

БАТАРЕЙНАЯ СИСТЕМА ЗАЖИГАНИЯ ДВИГАТЕЛЯ [c.309]

Батарейная система зажигания при установке ее на современные двигатели не может обеспечить надежной работы, так как она имеет ряд недостатков. [c.148]

Батарейная система зажигания используется в двигателях (например, автомобильных), в которых аккумуляторная батарея служит также для пуска, освещения и т. п,, а система зажигания от магнето — в двигателях (например, мотоциклетных), в которых требуется простота обслуживания, компактность и малая масса. При пуске и работе двигателя с малой частотой вращения мощность искры в системе батарейного зажигания не зависит от частоты вращения, что является преимуществом по сравнению с системой зажигания от магнето. [c.161]

С ростом частоты вращения двигателя обычная батарейная система зажигания перестает удовлетворять требованиям эксплуатации (особенно многоцилиндровых двигателей). Уменьшение времени замкнутого состояния контактов, усиливающиеся с увеличением частоты вращения инерционные явления в системе и явления, обусловленные токами самоиндукции, существенно уменьшают напряжение на электродах свечи зажигания. Применение электронных приборов позволяет снизить силу тока в первичной цепи системы зажигания. Вследствие этого повышается надежность системы зажигания и стабильность ее работы в большом диапазоне изменения частоты вращения двигателя. [c.165]

На характерных осциллограммах цепей низкого (см. рис. 6.64, а) и высокого (см. рис. 6.64, б) напряжений батарейной системы зажигания карбюраторного двигателя отражен процесс за один рабочий период, которому соответствует 90° угла поворота кулачка распределителя зажигания для 4-цилиндрового, 60° — для 6-цилиндрового и 45° — для 8-цилиндрового двигателя. В точке О происходит размыкание контактов прерывателя. При этом во вторичной цепи за счет токов индукциИ напряжение и достигает 8—12 кВ, при котором происходит искровой пробой межэлектродного промежутка свечи. Участок О—1 отражает процесс горения искры, который поддерживается при напряжении порядка 1,0—1,5 кВ. В первичной цепи горение искры отражается затухающими колебаниями К, связанными с работой конденсатора. [c.181]

Развитие полупроводниковой техники способствовало появлению и применению транзисторов в системах зажигания двигателей внутреннего сгорания. Отечественной промышленностью выпускаются транзисторные приставки к существующим батарейным системам для улучшения их эксплуатационных свойств. Основная цель применения транзисторов в системе зажигания двигателей состоит в том, что сила тока в цепи прерывателя должна быть значительно меньше силы тока в первичной обмотке катушки зажигания. [c.240]

Система зажигания двигателя батарейная и состоит из источников электрической энергии, распределителя зажигания, катушки зажигания, свечей зажигания, проводов и замка (включателя) зажигания. [c.362]

Для воспламенения рабочей смеси в цилиндре от электрической искры необходимо напряжение 10000—15000 В. Ток такого напряжения распределяется по цилиндрам прибора системы зажигания карбюраторных двигателей (батарейной системы зажигания). [c.92]

Батарейная система зажигания применяется в автомобильных и мотоциклетных двигателях, система зажигания от магнето в мотоциклетных, лодочных, тракторных, авиационных и стационарных двигателях. [c.166]

Подавляющее большинство современных автомобилей оборудовано батарейной системой зажигания, которая без каких-либо существенных изменений применяется почти с момента изобретения автомобиля. Однако двигатели автомобилей с тех пор претерпели значительные изменения. Современные двигатели высокооборотны и имеют высокую степень сжатия. [c.7]

Батарейная система зажигания на сегодняшний день технически устарела и вследствие ряда присущих ей принципиальных недостатков стала тормозом на пути дальнейшего совершенствования автомобильных двигателей. Поэтому как у нас в стране, так и за рубежом проводятся многочисленные исследования, имеющие целью усовершенствовать батарейную систему зажигания или заменить ее принципиально иной, с лучшими техническими характеристиками. [c.7]

Работа батарейной системы зажигания происходит следующим образом. При вращении вала двигателя вращается кулачок и контакты прерывателя попеременно замыкаются и размыкаются. После замыкания контактов при замкнутом выключателе зажигания через первичную обмотку катушки зажигания И1 протекает ток, [c.8]

Таким образом, принципиальный недостаток батарейной системы зажигания, заключающийся в снижении вторичного напряжения (а значит, и энергии искрообразования) при малых и больших частотах вращения коленчатого вала двигателя, в конденсаторной системе зажигания полностью устраняется. [c.21]

Сравнительно малую длительность искры следует отнести к преимуществам конденсаторной системы зажигания. Как показывают исследования [3], в исправном и правильно рассчитанном двигателе после достижения нормального теплового режима воспламенение рабочей смеси происходит в течение 10—15 мкс, и искра длительностью свыше 1000 мкс, имеющая место в батарейной системе зажигания [1], бесполезна и вызывает лишь эрозию электродов свечей, сокращая их срок службы. Срок службы свечей в конденсаторной системе зажигания поэтому увеличивается в несколько раз. [c.27]

Распределитель, В качестве примера рассмотрим распределитель Р4-В, устанавливаемый на двигателе ЗИЛ-130 с батарейной системой зажигания. При использовании на двигателе контактно-транзисторной системы зажигания применяется распределитель Р4-Д, который в отличие от распределителя Р4-В не имеет конденсатора. В случае выхода из строя распределителя Р4-Д его можно заменить распределителем Р4-В, предварительно сняв с него конденсатор. [c.163]

Из рассмотрения выражений (1) и (2), а также осциллограмм на рис. 3 вытекает первый принципиальный недостаток батарейной системы зажигания, а именно снижение вторичного напряжения по мере повышения числа оборотов коленчатого вала двигателя и увеличения числа его цилиндров. [c.10]

Таким образом, снижение вторичного напряжения на малых оборотах коленчатого вала двигателя является вторым принципиальным недостатком батарейной системы зажигания. Устранить этот недостаток соответствующим выбором емкости искрогасительного конденсатора i практически невозможно. В самом деле, при [c.11]

Система зажигания двигателя МеМЗ 307 (1,31) батарейная, номинальное напряжение 12В, бесконтактная. В данной системе зажигания отсутствует традиционный коммутатор, распределитель зажигания ( трамблёр ) и катушка зажигания. Вместо них используется модуль зажигания, состоящий из двух катушек зажигания и встроенного двухканального электронного коммутатора. Управ- [c.8]

Электросистема двигателя обязательно должна иметь выключатель зажигания. Он обычно располагается под левой рукой пилота. Батарейные системы зажигания на самолетах лучше не использовать, большую надежность обеспечивает магнето. Более того, иа авиационных двигателях используются два магнето, дублирующих друг друга, а в каждом цилиндре устанавливаются две свечи, работающие одновременно от разных магнето. [c.197]

Рабочая смесь в карбюраторном двигателе воспламеняется от электрической искры, возникающей между электродами свечи зажигания. Искровой промежуток в свече зажигания, который равен 0,5—0,8 мм, представляет собой часть электрической цепи со значительным сопротивлением для тока. Это сопротивление повышается с увеличением давления газов в цилиндре, для его преодоления необходимо напряжение 12—20 кВ. При появлении искры сопротивление между электродами снижается и повышается температура искры, которая превращается в дугу в виде искрового разряда. Искра воспламеняет небольшую часть горючей смеси у электродов свечн, затем фронт пламени распространяется по всей камере сгорания. При батарейном зажигании ток высокого напряжения получается в индукционной катушке зажигания трансформацией постоянного тока, поступающего в нее через прерыватель из источника тока. Схема батарейной системы зажигания показана на рис. 163. В эту систему входят источники тока (аккумуляторная батарея 8 и генератор /), катушка зажигания 3, прерыватель 2, распределитель 4, свечи зажи- [c.233]

Как указывалось в 33, особенность рабочей характеристики системы батарейного зажигания— снижение напряжения по мере увеличения числа оборотов двигателя — неблагоприятна для надежного обеспечения зажигания в быстроходных многоцилиндро-вых двигателях. Тенденция к постоянному росту степени сжатия и числа оборотов автомобильных двигателей усугубляет трудности, так как от системы зажигания требуется более высокое напряжение при большем числе оборотов двигателя. В связи с этим высказывались мнения, что возможности батарейной системы зажигания уже исчерпаны и она может тормозить дальнейшее усовершенствование авто мобильных двигателей. Это является одной из причин интенсивных поисков новых систем зажигания, свободных от указанного недостатка. [c.194]

Напряжение во вторичной цепи повышается примерно на 25% по сравнению с батарейной системой зажигания, что позволяет увеличить зазор между контактами свечи с 0,6—0,8 до 1,0—, 2мм. Вместе с этим увеличивается энергия искрового разряда и облегчается пуск двигателя и его приемистость. Срок службы свечей увеличивается на 20—30% Раслод топлива благодаря устойчивости работы системы зажигания снижается на 2% и более. [c.196]

В пос.чеднее время в связи с ростом числа оборотов двигателей обычная батарейная система зажигания перестает удовлетворять требованиям эксп. луатации (особенно многоцилиндровых двигателей). Уменьшение времени замкнутого состояния контактов, усиливающиеся с увеличением числа оборотов инерционные явления в систелге и явления, обусловленные токами самоиндукции, [c.172]

В систему зажигания газовых двигателей средне и oo. jbinoii мощности вводят приборы защиты. И )едпазначенные для остановки двигателя И1)И нарушении нормальш г условии его работы. Приборы зашиты автоматически отключают систему зажигания при превышении предельного значепня числа оборотов коленчато] о вала, температуры воды в системе охлаждения пли давления масла в циркуляционной масляной системе. При батарейной системе зажигания происходит разрыв )лектрической цепи, при питании от магнето замыкание ее на массу. [c.333]

В современных автомобилях наибольшее распространение получили батарейные системы зажигания, в которых первичным источником электрической энергии являются аккум) лято])ные батареи или генератор. Вырабатываемый ими ток низкого напряжения преобразуется затем в импульсы высокого иапг яжеиия Классическая схема батарейного зажигания на примере восьмицилиндрового двигателя показана на рис. 80. [c.150]

Таким образом, снижение вторичного напряжения на малых обо-уотах коленчатого вала двигателя является вторым принципиальным недостатком батарейной системы зажигания. Устранить этот недостаток соответствующим выбором емкости искрогасительного конденсатора практически невозможно. В самом деле, при уменьшении емкости конденсатора С1 в соответствии с выражением (2) вторичное напряжение должно было бы увеличиваться и достигать максимума при С1 = 0. Однако на практике значительное уменьшение емкости С1 снижает вторичное напряжение, так как при этом усили- ается дугообразование и, следовательно, возрастают потери. При чрезмерном увеличении емкости конденсатора С1 вторичное напря-]кение, как это следует из выражения (2), также снижается. Практически емкость конденсатора С1 выбирают в пределах от 0,15 до Р,35 мкФ. [c.14]

К недостаткам транзисторной системы зажигания (со специальной катушкой) следует отнести также большую потребляемую мощность. которая при неработающем двигателе и замкнутых контактах прерывателя достигает 100 Вт (имеется в виду отечественная контактно-транзисторная система ТК-Ю2 с катушкой Б114, устанавливаемая на грузовых автомобилях ЗИЛ-130), а при работающем двигателе — 60 Вт, что вдвое превышает потребляемую мощность обычной батарейной системы зажигания. Последний недостаток делает нежелательным применение транзисторной системы зажигания на легковых автомобилях, оборудованных аккумулятором небольшой емкости. [c.18]

Рассмотренная выше батарейная система зажигания (классическая) применяется на автомобильных двигателях с 1925 г. Она сравнительно проста, что и обусловило ее широкое распространение. В последние годы в автомобилестроении наметились тенденции увеличения степени сжатия, угловой скорости коленчатого вала и числа цилиндров двигателя. Вследствие этого возросли требования, предъявляемые к системе зажигания. При эксплуатации форсированных автомобильных двигателей выявились существенные недостатки батарейной системы зажигания 1СТро обгорают и изнашиваются контакты прерывателя, чаК как черей НН5Гпроходит ток значительной силы увеличивается зазор между контактами прерывателя, а следовательно, и угол опережения зажигания, что снижает надежность работы системы зажигания резко уменьшается ток в цепи низкого напряжения, вследствие чего снижается и ток в цепи высокого напряжения возникают перебои с воспламенением рабочей смеси, затрудняется пуск двигателя, падает его экономичность и мощность. [c.171]

В настоящее время получает распространение контактно-транзисторная система зажигания, имеющая значительные преимущества по сравнению с батарейной системой зажигания через контакты прерывателя проходит слабый ток управления транзистором, а не полный ток (до 8 А) первичной обмотки катушки зажигания, поэтому исключается эрозия и износ контактов врзрастает высокое напряжение (примерно на 30%) и энергия искрового разряда, что позволяет увеличить зазор между электродами свечи зажигания облегчается пуск и улучшается экономичность работы двигателя. [c.171]

Подавляющее большинство современных автомобилей оборудовано батарейной системой зажигания, которая без каких-либо существенных изменений применяется почти с момента изобретения автомобиля. Однако двигатели автомобилей с тех пор претерпели значительные изменения. Современные двигатели высокооборотны и имеют высокие степени сжатия. Батарейная система зажигания на сегоднящний день технически устарела и вследствие ряда присущих ей принципиальных недостатков стала тормозом на пути дальнейшего совершенствования автомобильных двигателей. Поэтому ка-к у нас в стране, так и за рубежом проводятся многочисленные исследования, имеющие целью усовершенствовать батарейную систему зажигания или заменить ее принципиально иной с лучшими техническими характеристиками. [c.5]

Подавляющее большинство современных легковых автомобилей с ка бюраторными двигателями снабжено батарейной системой зажигания, которую в дальнейшем будем называть классической. Эта система, подробно описанная в [1, 2, 4], без каких-либо существенных изменений применяется почти с момента изобретения автомобиля. Однако автомобильные двигатели стали существенно более высокооборотными и имеют высокие степени сжатия, что налагает дополнительные требования на системы зажигания. Кроме того, в последнее время к этим системам стали предъявлять требования, направленные на радикальное повышение топливной экономичности и экологической чистоты автомобильных двигателей. [c.5]

Система зажигания двигателя — Cars History.

ru

Приборы батарейного зажигания

Для получения надежного искрового разряда при расстоянии между электродами свечи зажигания 0,5 — 0,7 мм и давлении сжатой в цилиндре рабочей смеси, достигающем 1,0 — 1,2 Мн/м 2 (10 — 12 кгс/см 2 ), к электродам должен быть подведен ток напряжением не ниже 10 000 — 12 000 в.

У карбюраторных двигателей отечественных автомобилей применяют систему батарейного зажигания.

Схема батарейного зажигания

Схема батарейного зажигания:

Р, ВК, ВК-Б, КЗ — зажимы; 1 — конденсатор; 2 — кулачок прерывателя; 3 и 4 — контакты прерывателя; 5 — вторичная обмотка катушки зажигания; 6 — сердечник; 7 — первичная обмотка катушки зажигания; 8 — добавочное сопротивление; 9 — выключатель (замок) зажигания; 10 — тяговое реле стартера; 11 — контактный диск реле; 12 — аккумуляторная батарея; 13 — крышка распределителя; 14 — ротор; 15 — боковые контакты; 16 — провод высокого напряжения; 17 — свеча зажигания.

В систему зажигания входят: катушка зажигания, прерыватель-распределитель, конденсатор, свечи зажигания, выключатель (замок) зажигания и провода. Указанные приборы и детали образуют две электрические цепи — низкого и высокого напряжения.

Действует система зажигания следующим образом. При включенном зажигании и замкнутых контактах 3 и 4 прерывателя по цепи низкого напряжения проходит ток от аккумуляторной батареи. Цепь тока низкого напряжения: положительный выводной штырь батареи 12 — зажим тягового реле 10 стартера — выключатель зажигания 9 — зажим ВК-Б катушки зажигания — добавочное сопротивление 8 — зажим ВК — первичная обмотка 7 — зажим Р — подвижной контакт 3 прерывателя — неподвижный контакт 4 — масса — отрицательный выводной штырь батареи.

Ток низкого напряжения, протекающий по первичной обмотке катушки зажигания (первичный ток), создает в ее сердечнике 6 магнитное поле, пронизывающее витки обеих обмоток. Когда выступ вращающегося кулачка 2, нажимая рычаг подвижного контакта 3 прерывателя, отведет этот контакт от неподвижного контакта 4, цепь первичного тока прервется и сердечник катушки размагнитится.

Вследствие этого во вторичной обмотке 5 катушки зажигания индуцируется э.д.с., величина которой благодаря быстрому уменьшению магнитного потока в сердечнике и большому числу витков этой обмотки достигает 16 000 — 20 000 е. Под действием индуцированной во вторичной обмотке э.д.с. на электродах свечи возникает искровой разряд и в цепи вторичной обмотки появляется ток высокого напряжения (вторичный ток).

Цепь тока высокого напряжения: вторичная обмотка катушки — центральный контакт крышки 13 распределителя — ротор 14 — боковой контакт 15 — провод 16 высокого напряжения — электроды свечи 17 — масса — аккумуляторная батарея — зажим реле стартера — выключатель зажигания — добавочное сопротивление — первичная обмотка катушки — вторичная обмотка.

В момент размыкания цепи тока низкого напряжения в первичной обмотке катушки индуцируется э.д.с. самоиндукции величиной 200 — 300 в. Под ее действием в цепи низкого напряжения возникает ток самоиндукции. Поскольку направление тока самоиндукции совпадает с направлением прерванного первичного тока, он противодействует размагничиванию сердечника катушки и этим снижает напряжение вторичного тока. Кроме того, ток самоиндукции, проходя через начинающие размыкаться контакты прерывателя, вызывает искрение между ними и быстрое подгорание контактов.

Это вредное влияние тока самоиндукции устраняет конденсатор 1. Возникающий в момент начала размыкания контактов прерывателя кратковременный ток самоиндукции заряжает конденсатор. Так как конденсатор включен параллельно контактам прерывателя, они почти не подгорают.

Конденсатор разряжается через первичную обмотку катушки зажигания. При этом разрядный ток конденсатора, протекая по этой обмотке в направлении, противоположном направлению первичного тока, способствует более резкому исчезновению магнитного поля, созданного первичным током, благодаря чему повышается напряжение вторичного тока.

Катушка зажигания, преобразующая ток аккумуляторной батареи (первичный ток) в ток высокого напряжения, поступающий к свечам (вторичный ток), состоит из стального корпуса, сердечника, первичной и вторичной обмоток, карболитовой крышки с центральным контактом и зажимами В К-Б, В К и Р и добавочного сопротивления.

Корпус катушки при помощи хомута и винтов укреплен в моторном отсеке автомобиля. Сердечник изготовлен из отдельных, полосок электротехнической стали, благодаря чему ослабляются индуцируемые в нем вихревые токи. Вторичная обмотка состоит из 18 — 20 тыс. витков эмалированного провода диаметром 0,07 — 0,10 мм и намотана на картонную трубку, установленную на сердечнике.

Рекомендуется к прочтению  Устройство и принцип работы системы зажигания автомобиля. Система зажигания автомобиля

Первичная обмотка, имеющая 300 — 350 витков изолированного провода диаметром 0,7 — 0,85 мм, намотана поверх вторичной и изолирована от нее слоем специальной бумаги. Чтобы повысить надежность изоляции, обе обмотки пропитаны трансформаторным маслом. С этой же целью все свободные полости в корпусе катушки залиты специальной изоляционной массой, а у некоторых катушек зажигания (например, Б-13 автомобилей ЗИЛ-130, ГАЗ-13 «Чайка» и др.) заполнены трансформаторным маслом.

Добавочное сопротивление (вариатор) 8 улучшает работу катушки зажигания при больших числах оборотов коленчатого вала двигателя, а также облегчает пуск двигателя стартером. Когда двигатель работает на малых оборотах, контакты прерывателя остаются замкнутыми сравнительно длительное время, и в течение него сила тока в первичной обмотке успевает достигнуть максимальной величины.

При этом стальная спираль вариатора нагревается и ее электрическое сопротивление возрастает, ограничивая силу тока в первичной цепи. Во время работы на больших оборотах время замкнутого состояния контактов уменьшается и сила тока в первичной обмотке не успевает возрасти до максимальной величины. Нагрев и сопротивление вариатора уменьшаются, что частично компенсирует ослабление тока в первичной обмотке. Поэтому напряжение вторичного тока остается достаточно высоким.

При пуске двигателя стартером вариатор выключается (замыкается накоротко) контактным диском и реле стартера. Поэтому, несмотря на падение напряжения аккумуляторной батареи в момент включения стартера, сила тока в первичной обмотке катушки зажигания и напряжение во вторичной обмотке сохраняют достаточную величину.

«Автомобиль», под. ред. И.П.Плеханова

Прерыватель-распределитель состоит из прерывателя и распределителя, объединенных в один прибор с общим приводом. Прерыватель разрывает в требуемые моменты цепь первичного тока. Он состоит из чугунного корпуса 19, неподвижного опорного 7 и подвижного 8 дисков, вольфрамовых контактов 25 и 26, валика 12, кулачка 22, центробежного и вакуумного регуляторов опережения зажигания и октан-корректора. Прерыватель-распределитель Прерыватель-распределитель: 1 —…

Искровой разряд (искра) должен появляться в свече, когда поршень несколько не доходит до в.м.т. в конце сжатия, т. е. с опережением до в.м.т. Это необходимо, чтобы к моменту прохождения поршнем в.м.т. рабочая смесь успела полностью воспламениться. Величину опережения зажигания измеряют углом поворота коленчатого вала от момента появления искры до прихода поршня в в.м.т. Этот угол…

В стальном корпусе 4 помещен керамический изолятор 7 с центральным электродом 1. Изолятор зажат между медными кольцевыми прокладками 5 и 6 и укреплен путем завальцовывания верхней кромки корпуса свечи. В нижнюю часть корпуса запрессован боковой электрод 2. Нижняя часть центрального электрода и боковой электрод изготовлены из сплава никеля с марганцем. Между электродами должен быть зазор…

В описанной выше системе батарейного зажигания с ростом частоты вращения коленчатого вала двигателя снижается напряжение во вторичной цепи, вызываемое (особенно у двигателей с большим числом цилиндров) сокращением времени замкнутого состояния контактов прерывателя, вследствие чего уменьшается магнитный поток в катушке зажигания. Этого можно было бы избежать, увеличив силу тока в первичной цепи, но такое увеличение вызывает…

Неисправности в системе зажигания приводят к нарушению моментов воспламенения рабочей смеси в цилиндрах, перебоям в работе свечей или полному прекращению искрообразования. Для проверки наличия тока высокого напряжения снимают крышку распределителя, вынимают из гнезда центрального контакта провод высокого напряжения, включают зажигание и, удерживая конец провода высокого напряжения на расстоянии 4 — 5 мм от двигателя (массы),…

Ежедневное обслуживание Проверить внешним осмотром состояние прерывателя-распределителя, свечей зажигания и проводов низкого и высокого напряжения. Первое и второе технические обслуживания: очистить приборы зажигания снаружи; смазать прерыватель; проверить состояние и действие прерывателя-распределителя, свечей и катушки зажигания, установку момента зажигания. Выполнение операций обслуживания приборов зажигания Смазка прерывателя-распределителя. Необходимо смазать: втулки валика прерывателя, повернув на один оборот крышку…

8.3.1. СИСТЕМЫ ЗАЖИГАНИЯ. История электротехники

8.3.1. СИСТЕМЫ ЗАЖИГАНИЯ

Низковольтная магнитоэлектрическая машина, названная впоследствии «магнето низкого напряжения», была впервые применена для зажигания двигателей внутреннего сгорания (ДВС) в 1875 г. От магнето осуществлялось зажигание на отрыв — внутри цилиндра ДВС помещались два электрода, которые механическим путем раздвигались. В дальнейшем система была дополнена индукционной катушкой зажигания (бобиной), получавшей питание от магнето низкого напряжения, и зажигание стало осуществляться электрической искрой высокого напряжения. В первоначальных конструкциях магнето обмотка якоря совершала качательное движение в поле постоянного магнита, затем движение стало вращательным.

Распределение энергии зажигания по цилиндрам первоначально осуществлялось на стороне низкого напряжения. В частности, на первых моделях автомобиля «Форд» устанавливалось по числу цилиндров четыре катушки зажигания, четыре электромагнитных прерывателя и магнето низкого напряжения.

Однако после 1910 г. система с магнето низкого напряжения была вытеснена системой с магнето высокого напряжения. В то же время был осуществлен переход на распределение высокою напряжения по свечам.

Магнето высокого напряжения было изобретено в 1900 г. М. Будевиллем и усовершенствовано в 1901 г. Г. Хонольдом в фирме «Бош» (Германия).

Выпуск отечественных автомобильных магнето был освоен с использованием конструкции магнето фирмы «Сцентилла» (Чехословакия).

В своем окончательно сформированном виде магнето отечественных автомобилей представляло собой однофазную электрическую машину переменного тока с двух- или многополюсным ротором, несущим на себе постоянные магниты с полюсными наконечниками и вращающимся между выступами магнитопровода трансформатора высокого напряжения, ток в первичной обмотке которого коммутировался прерывательным механизмом. При разрыве тока во вторичной обмотке наводилось высокое напряжение (10–17 кВ), подводящееся через распределительный механизм к свечам. Регулировка момента искрообразования (опережения зажигания) производилась либо вручную, либо центробежным автоматом.

Совершенствование конструкции магнето шло в основном в направлении применения постоянных магнитов с большим запасом магнитной энергии.

Недостатком магнето является малое вторичное напряжение при низких частотах вращения и, в частности, при пуске. Поэтому батарейная система зажигания в 20–30-х годах нашего века стала вытеснять магнето сначала в США, потом в Европе.

На легковых автомобилях «Форд-А» и грузовых «Форд-АА», выпуск которых был начат в 1927–1928 гг., уже было установлено батарейное зажигание.

Зажигание от магнето применялось на первых отечественных грузовых автомобилях завода АМО (ЗИЛ) «АМО-Ф-15», выпуск которых начался в 1924 г.

Магнето дожило до наших дней в виде магдино — совокупности электрического генератора и магнето, которое устанавливается на мопеды, мотоциклы легкого класса и применяется в комплекте с вынесенным трансформатором высокого напряжения и полупроводниковым коммутатором.

В батарейном зажигании электрический ток, получаемый от аккумуляторной батареи, превращается в высокое напряжение индукционной катушкой (катушкой зажигания — бобиной). Основными элементами этой системы являются выключатель зажигания, прерыватель-распределитель и катушка зажигания. Число витков вторичной обмотки катушки зажигания в 50–250 раз больше, чем первичной. Поэтому при размыкании тока в первичной обмотке прерывателем исчезающий магнитный поток наводит во вторичной обмотке высокое напряжение, поступающее через бегущий контакт распределителя на свечи.

Первоначально регулировка момента зажигания осуществлялась вручную («Форд-А», «Форд-АА», Г A3-А, ГАЗ-АА и др.), затем появился центробежный регулятор опережения зажигания, изменяющий момент зажигания по скорости (Ml, ЗИС-5, ЗИС-101), а затем и вакуумный регулятор, осуществляющий регулировку по нагрузке (М20 «Победа», ГАЗ-51, ЗИС-150). В окончательном виде прерыватель-распределитель современных автомобилей содержит оба этих регулятора.

Катушка зажигания классической батарейной системы зажигания имеет разомкнутый магнитопровод, т.е. обмотки располагаются на стержневом сердечнике, набранном из листов электротехнической стали.

С изобретением в 1948 г. транзистора, появилась возможность устранить существенный недостаток контактной батарейной системы зажигания — повышенный износ контактов прерывателя. Первоначально возникли контактно-транзисторные системы («Дженерал моторс» — 1962 г., отечественные — 1966 г.), где ток в катушке зажигания коммутировался транзистором, базовая цепь которого управлялась контактами прерывателя. Применение контактно-транзисторной системы позволило увеличить запас энергии в катушке, что благотворно сказалось на зажигании.

С появлением контактно-транзисторного зажигания на автомобилях возникло новое изделие — электронный коммутатор, включающий в себя силовой коммутирующий транзистор, схему его управления и защиты.

Благодаря простоте и дешевизне контактно-транзисторная система более четверти века обеспечивала нормальное зажигание восьмицилиндровых бензиновых двигателей грузовых автомобилей ЗИЛ и ГАЗ.

Однако развитие электроники позволило перейти на бесконтактные электронные системы зажигания (США — 1964 г., СССР — 1973 г.).

В таких системах механический контактный прерыватель заменен датчиком, управляющим электронным коммутатором, — магнитоэлектрическим («Искра») или датчиком Холль («Бош», зажигание ВАЗ-2108).

Применение электронной системы зажигания с регулируемым временем накопления энергии, впервые установленной на автомобилях ВАЗ-2108, позволило избежать снижения вторичного напряжения с ростом частоты вращения ДВС.

Развитие электронной промышленности привело к появлению после 1967 г. на автомобилях интегральных микросхем. В 1973 г. фирма «Дженерал электрик» использовала в системе зажигания интегральную схему на монокристалле кремния.

Электронные системы позволили увеличить энергию воспламенения на свечах, но их развитие обеспечило и решение глобальных задач, связанных с экономией топлива и снижением токсичности отработанных газов. При этом был осуществлен переход на электронное управление углом опережения зажигания.

Аналоговая система управления углом опережения зажигания была установлена на автомобиле «Крайслер» в 1975 г. Однако аналоговые системы не нашли широкого распространения. В 1976 г. фирма «Дженерал моторc» применила цифровую систему управления углом опережения зажигания МИСАР. Центральным узлом системы являлся микропроцессор. Микропроцессор по заданной программе управлял блоком высокого напряжения, содержащим электронный коммутатор, катушку зажигания и переключатель, выполняющий функции распределителя. На отечественных автомобилях микропроцессорные системы появились в конце 80-х годов.

Электронные коммутаторы позволили повысить ток в первичной обмотке катушки зажигания и перейти на конструкцию с замкнутым магнитопроводом.

В рассмотренных выше системах накопления энергии, используемой затем для воспламенения смеси, осуществлялось в магнитном поле катушки зажигания. Однако в основном для двухтактных двигателей мопедов, мотоциклов легкого класса и т.п. нашли применение системы зажигания с накоплением энергии в конденсаторе. Конденсаторная система дополнительно содержит преобразователь напряжения бортовой сети в высокое для заряда конденсатора либо конденсатор заряжается от специальной обмотки генератора с повышенным напряжением. Коммутация в цепи конденсатор — первичная обмотка катушки зажигания осуществляется тиристором.

Первоначально искровые свечи зажигания имели разборную и неразборную конструкции, причем в отечественном производстве предпочтение было отдано разборной свече, у которой изолятор вместе с центральным электродом прижимался ниппелем, ввернутым в верхнюю часть корпуса свечи. Это позволяло заменять изолятор или очищать центральный электрод без извлечения корпуса свечи из головки блока цилиндров. Изолятор изготавливался из керамики или слюды, но слюда применялась только для гоночных двигателей.

До 1930 г. основным типом американских свечей были свечи с дюймовой резьбой в Европе — с метрической. В дальнейшем дюймовые свечи были вытеснены метрическими.

В настоящее время конструкция свечи стабилизировалась и применяется только в неразборном варианте. Свеча состоит из металлического корпуса, одного или нескольких боковых электродов, изолятора с центральным электродом и контактной головкой. Первоначально изоляторы автомобильных свечей изготавливались в основном из стеатита, сейчас из уралита, боркорунда, хилумина, синоксаля и т.п.

В настоящее время все большее распространение находят свечи с расширенным температурным диапазоном. Теплоотдача таких свечей увеличена за счет выполнения центрального электрода комбинированным.

Определенную специфику имеют провода, соединяющие распределительный механизм со свечами: подведение к свечам высокого напряжения (20–30 кВ) при малых значениях тока и излучении радиопомех. Обычно помехоподавление осуществляется резисторами, устанавливаемыми в свечах, распределителе или отдельно, а также экранированием всей системы. Однако помехоподавляющие свойства могут обеспечиваться и конструкцией самого провода. Провода такого типа бывают с распределенным активным сопротивлением (резистивный провод) и с распределенным активно-индуктивно-емкостным сопротивлением (реактивный провод).

Развитие электроники на современном этапе ведет к объединению систем управления зажиганием и топливоподачей двигателя, а также коробкой перемены передач и сцеплением.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Методическая разработка урока «Батарейная система зажигания»

Областное государственное бюджетное
профессиональное образовательное учреждение
«Барышский индустриально- технологический техникум»

Методическая разработка

интегрированного открытого урока

МДК 01.02 «Устройство, техническое обслуживание и ремонт автотранспорта» — Физика

Авторы- разработчики: Сутягин М. И.

Пояснительная записка.

Предложенный план-конспект и технология проведения интегрированного урока теоретического обучения по МДК 01.02 «Устройство, техническое обслуживание и ремонт автотранспорта» разработан согласно программных требований по профессии «Автомеханик» по теме: «Батарейная система зажигания». Формируемый интеграционный блок, в данном случае из раздела: «Электрооборудование» по теме: «Батарейная система зажигания». Урок проводится совместно с преподавателем предмета «Физика». Здесь используется глубокая внутри предметная и межпредметная интеграция, в данном случае: МДК 01.02 «Устройство, техническое обслуживание и ремонт автотранспорта», «Физика», «Химия», «Материаловедение».

Предметом анализа выступают многоплановые объекты батарейной системы зажигания (устройство источников питания, приборы, их работа, неисправности и устранение этих неисправностей), а также операции технического обслуживания системы зажигания. При изучении темы занятия расширяются и углубляются круг связанных с ней знаний (от изучения принципа работы отдельных приборов до практического поиска неисправностей). Происходит всё большее усложнение соотношения элементов, углубления познания (начиная от устройства простейших деталей, до поиска и устранения неисправностей на практике). При этом идёт комплексное изучение темы, более подробное и углублённое, с максимальными условиями для самостоятельной работы студентов, как в составе звена, так и индивидуально.

План-конспект открытого интегрированного урока по

Раздел : «Электрооборудование».

Тема урока: «Батарейная система зажигания».

Образовательная:

1. Добиться глубокого понимания студентами устройства и принципа работы батарейной системы зажигания, определения ее неисправностей.

2. Научить студентов определять и различать электрические цепи и приборы системы зажигания.

3. Сформировать знания об источниках питания, электрических цепях, приборах электрооборудования, явлений индукции и самоиндукции в процессе преобразования тока низкого напряжения в ток высокого напряжения.

Развивающая:

1. Развивать способности студентов к сравнению и анализу.

2. Читать чертежи, электрические схемы.

Воспитательная:

1. Воспитывать интерес к будущей профессии и бережное отношение к технике.

2. Прививать техническую культуру речи.

Освоение материала урока направлено на достижение студентами следующих результатов:

личностных:

−физически грамотное поведение в профессиональной деятельности при обращении с приборами и устройствами;

− готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности и объективное осознание роли физических компетенций в этом;

− умение использовать достижения современной физической науки и физических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

− умение выстраивать конструктивные взаимоотношения в команде по решению общих задач;

метапредметных:

− использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания;

− использование основных интеллектуальных операций: постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов для изучения различных сторон физических объектов, явлений и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;

− умение анализировать и представлять информацию в различных видах;

− умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;

предметных:

− формирование представления о роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;

− владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное использование физической терминологии и символики;

− формирование умения применять полученные знания для объяснения

условий протекания физических явлений в профессиональной сфере и для принятия практических решений в повседневной жизни.

Освоение материала урока способствует формированию следующих компетенций:

Общих: ОК1- ОК6;

Профессиональных:

ПК 1. Диагностировать автомобиль, его агрегаты и системы

ПК 2. Выполнять работы по различным видам технического обслуживания

ПК 3. Разбирать, собирать узлы и агрегаты автомобиля и устранять неисправности

ПК 4. Оформлять отчётную документацию по техническому обслуживанию.

Тип урока: Интегрированный.

Вид урока: лекция с элементами анализа.

Методы и формы обучения:

Словесный — (монологическая речь учащихся, слово учителя).

Наглядный — (плакаты, стенды, монтажный двигатель Ваз 2101, детали батарейной системы зажигания).

Тестовый контроль.

Используемые педагогические технологии:

1. Итеграция предметов.

2. Блочная система обучения.

Методы стимулирования и мотивации учения:

Создание ситуации познавательной новизны.

Проблемная ситуация и поиск самостоятельного ответа.

Методы контроля знаний

1. Фронтальный опрос.

2. Монологические ответы.

Межпредметные связи:

Тема: Постоянный электрический ток.

МДК 01.02 «Устройство, техническое обслуживание и ремонт автотранспорта»

Тема: Батарейная система зажигания

Оборудование:

1. Мультимедийный проектор.

2. Агрегаты электрооборудования.

3. Стенд системы зажигания.

4. Монтажный двигатель ВАЗ -2101.

1. Организационная часть урока ( 2 мин).

Проверка наличия и внешнего вида учащихся:

1. Приём рапорта дежурных.

2. Проверка письменных принадлежностей.

3. Группа делится на четыре звена.

2. Сообщение темы и цели урока, объяснение необходимости знаний по теме и их применению на практике. (Слайд 1, 2) (1 мин)

3. Мотивация студентов (1 мин)

4. Объяснение нового материала. (20 мин)

МИ. Ребята, сегодня мы с Вами, проведём необычный урок по теме: «Батарейная система зажигания». Проводить мы его будем с преподавателем физики.

КН. На данном уроке мы с вами вспомним основные законы электродинамики. На их основе рассмотрим принцип действия батарейной системы зажигания.

МИ. Устройство основных приборов и работу батарейной системы зажигания рассмотрим на примере системы зажигания автомобиля ВАЗ 2101. На этом занятии мы также научимся определять и устранять неисправности системы зажигания.

МИ. Система зажигания предназначена для воспламенения горючей смеси в камере сгорания двигателя согласно порядка работы двигателя.

При неправильной регулировке во много раз увеличивается вредные выбросы в атмосферу снижается КПД двигателя и увеличивается расход топлива. (слайд 3)

Отсюда следует, что необходимо хорошо знать устройство системы зажигания и методы устранения неисправностей и отказов этой системы.

Исходя из ранее сказанного, Мы с Вами и рассмотрим на нашем уроке следующие вопросы:

1. Условия воспламенение горючей смеси в цилиндрах двигателя.

2. Основные приборы и цепи тока батарейной системы зажигания.

3. Работа батарейной системы зажигания.

4. Неисправности системы зажигания.

Сделаем запись в тетрадь.

МИ. Прежде чем мы с Вами начнём изучение устройства и работы батарейной системы зажигания, давайте выясним какие вы знаете приборы батарейной системы зажигания, каково их назначение?

Аккумуляторная батарея, катушка зажигания, прерыватель-распределитель, генератор, свечи.

КН. Как известно из курса физики, ДВС относится к тепловым двигателям. Поэтому чтобы высвободить внутреннюю энергию топлива необходимо воспламенить горючую смесь. Источником энергии для воспламенения рабочей смеси является дуговой разряд.

МИ. Разряд происходит между электродами свечи зажигания. (Слайд 4)

КН. Вопрос. Что может являться источником энергии электрического разряда?

Источником тока для поддержания дугового разряда может являться гальванический элемент.

МИ. Таким источником тока на незаведенном автомобиле является свинцово- кислотная аккумуляторная батарея. (Слайд 5).

КН. Вопрос. Какими свойствами обладает газовый промежуток и какие условия необходимы для его пробоя?

Газовый промежуток- изолятор. Для его пробоя необходимо высокое напряжение.

МИ. Для гарантированного пробоя зазора 1 мм между электродами необходимо напряжение порядка 20000 В. (Слайд 6).

КН. ЭДС аккумуляторной батареи составляет порядка 12,5- 14 В. Вопрос. Какое электротехническое устройство можно использовать для повышения низкого напряжения?

Для преобразования низкого напряжения в высокое можно использовать электронные преобразователи и трансформаторы.

КН. Вопрос. Какие принципы положены в основу работы трансформатора? Назовите его основные элементы.

В основу работы трансформатора положены принципы электромагнитной индукции. Основными элементами являются обмотки и сердечник.

МИ. Трансформатором для повышения напряжения на электродах свечи является катушка зажигания. (Слайд 7).

КН. Преобразование тока низкого напряжения в высокое будет происходить, если ток на его обмотки будет подаваться импульсами.

МИ. Устройством, преобразующим постоянное напряжение в импульсное является прерыватель- распределитель (Слайд 8).

КН. Пояснение принципа работы системы зажигания на принципиальной электрической схеме.

Студенты по мере появления слайдов отвечают на поставленные вопросы и делают опорные конспекты в рабочих тетрадях. В результате изучения материала у студентов формируется представление о структурных элементах системы зажигания, их устройстве и принципе работы.

5. Контроль, самоконтроль (6 мин)

Группам раздаются листы задания, на которых изображены элементы системы зажигания. Соедините элементы системы зажигания согласно структурной схемы. Выделите цветом провода высокого и низкого напряжения. Высокого напряжения- красным, низкого напряжения- синим.

Максимальное число баллов за выполнение задания равно десяти. Каждое верное электрическое соединение оценивается в 1 в один балл. Правильная расцветка проводов соответствует 1 баллу. Слайд 10.

Во время выполнения задания преподавателями проводятся необходимые консультации и при необходимости задаются наводящие вопросы.

После выполнения задания по эталону ответа (слайд 11) студенты проверяют правильность выполнения задания и выставляют количество набранных баллов в оценочный лист. Студенты вносят соответствующие поправки в схему.

6. Объяснение нового материала (4 мин)

МИ. Дается классификация неисправностей батарейной системы зажигания. Система зажигания состоит из большого числа приборов и устройств. Любая неисправность системы зажигания ведет либо к остановке двигателя, либо к снижению его КПД, увеличению расхода топлива и увеличению вредных выбросов в атмосферу. Как мы видим, система зажигания имеет механическую и электрическую части. Классифицируем возможные неисправности по этому признаку:

— Механические неисправности приборов системы зажигания;

-Электрические неисправности: подгорание контактов; нарушения изоляции; утечки; обрывы цепи; замыкания; неисправности источника питания.

Студенты делают конспект в рабочей тетради.

7. Контроль, самоконтроль (8 мин)

Группам раздаются листы задания, в которых на основе полученных знаний и анализа электрической схемы необходимо перечислить основные возможные неисправности приборов системы зажигания. Каждый верный ответ оценивается в 1 в один балл. Командам необходимо набрать как можно больше баллов. Слайд 12.

Во время выполнения задания преподавателями проводятся необходимые консультации и при необходимости задаются наводящие вопросы.

8. Подведение итогов урока (слайд 13) (2 мин)

Проводится подсчет набранных баллов, студентами заполняются листы самооценки, дается объективная оценка работы команд и студентов на уроке.

9. Домашнее задание (слайд 14) (1мин)

1. В.А. Родичев, Г.И.Родичева. «Тракторы и автомобили». М.: «Высшая школа» 2005г. Стр 306-312

2. В.С. Калисский, А.И. М Аизан, Г.Е. Нагула. «Автомобиль». М.: «Высшая школа» 2007г. Стр 119-133.

3. М.А. Рунец. «Справочник автомобильного механика» М.: «Транспорт». 1998г. Стр. 167-170.

4. В.А. Родичев, Г.И.Родичева. «Тракторы и автомобили». М.: «Высшая школа» 2003г.

5. В.С. Калисский, А.И. М Аизан, Г.Е. Нагула. «Автомобиль», М.: Высшая школа», 2007г.

Как появилась система зажигания автомобиля?

От чего заводится автомобиль и как к этому пришли

Благодаря системе внутреннего сгорания двигателя автомобиль везет пассажиров из пункта А в пункт Б. Разберемся, что «зажигает огонь» в двигателе, заставляя работать как часы.

Коротко о том, как работает двигатель внутреннего сгорания

Сердце автомобиля — двигатель внутреннего сгорания. В двигателе стоят поршни, которые двигаются по цилиндру вверх и вниз. Двигаясь вверх и вниз, поршни вращают коленчатый вал, который передает силу кручения на колеса. Раскрученные колеса двигают автомобиль. Подробнее, о том, как работает двигатель внутреннего сгорания, читайте тут.

За счет чего вращаются поршни?

Чтобы двигатель внутреннего сгорания начал работать, в цилиндре, где работают поршни двигателя, происходит детонация за счет микровзрыва воздушно-топливной смеси. За счет детонации поршни двигаются вверх-вниз. С разными видами топлива — дизель или бензин — детонация происходит по-разному.

В дизельном двигателе, при опускании поршня в цилиндр всасывается воздух — «вдыхание воздуха цилиндром» — затем поршень поднимается, сжимая воздух, чем нагревает его до 700-800 С. На пике поднятия поршня в цилиндр запускается дизельное топливо, которое тут же нагревается и выпускает пары, которые от температуры детонируют и опускают поршень вниз. Так энергия, созданная взрывом, превращается в механическую энергию, которая передается через движение поршня на колеса машины.

В бензиновом двигателе воспламенение и детонация происходят не от нагнетания воздуха, а от искры, создаваемой свечей зажигания. В цилиндр поступает смесь воздуха и бензина, которая при подъеме поршня воспламеняется искрой свечи и происходит детонация опускающая поршень вниз.

Перейдем к истории и разберемся, как возникла система зажигания и какие изменения пережила

Первые двигатели внутреннего сгорания, которые появились более столетия тому назад, использовали для воспламенения воздушно-топливной смеси раскаленную калильную головку. Смесь топлива с воздухом воспламенялась в конце такта сжатия от раскалённой калильной головки, которая стояла над цилиндром. Перед запуском калильная головка разогревалась древесными углями в корзинке прикрепленной к двигателю или паяльной лампой. Далее температура калильной головки поддерживалась сгоранием топлива при работе двигателя.

Пока поршень проходил цикл вращения сверху вниз, после детонации, камера была заполнена отработанными газами, из-за чего смесь не воспламенялась. Но как только поршень поднимался наверх до «мертвой точки», в цилиндр запускался обогащенный кислородом воздух и смесь воспламенялась от нагретой калильной головки.

Недостатки такой системы были в:

  • низком КПД из-за низкой степени сжатия и плохой продувки свежим воздухом;
  • нестабильности температуры калильной головки — при малой нагрузке, или холостых оборотах температура калильной головки падала и качество детонации ухудшалось, а при высоких нагрузках головка перегревалась, что снижало мощность и истощало ресурс работы двигателя;
  • перед запуском калильную головку требовалось разогревать 10-15 минут.

Особенности индукторной (англ. Magneto) и батарейной системы зажигания

Инженеры начали усовершенствовать систему зажигания — так вместо калийной головки появилась электрическая искра. Основными источниками возникновения искры стали индукторная и батарейная системы зажигания. По способу получения искры батарейное зажигание принципиально не отличается от индукторного.

Индукторное зажигание

Индуктор — это пассивный электрический компонент, состоящий из катушки проволоки обмотанной вокруг куска железа. Индуктор нужен, чтобы посредствам создания магнитного поля, задерживать ток в цепи и накапливать энергию в создаваемом в результате прохождения тока через индукционную катушку, магнитном поле.

Уже к 1902 году Бош изобрел индуктор со встроенными катушками, контактным выключателем и высоковольтными свечами.

В индуктивном зажигании искра создается посредством накопления тока в индукционной катушке. Ток в катушке накапливается, подача тока прерывается и катушка резко отдает накопленную энергию, в результате создавая искру воспламеняющую смесь в цилиндре двигателя.

Катушка зажигания

Катушка состоит из магнитопровода или мягкого провода, или листа, и двух электрических обмоток, называемых первичной и вторичной обмотками. Первичная обмотка имеет обычно 200-300 витков, ее конец соединен с внешним выводом. Вторичная обмотка имеет почти 21000 витков медного провода, который изолирован, чтобы выдерживать высокое напряжение. Он расположен внутри первичной обмотки, и один его конец соединен со свечой, а другой конец заземлен либо на первичной обмотке, либо на металлическом корпусе. Весь этот блок заключен в металлический контейнер, что делает его компактным.

Катушка — основная часть системы зажигания от аккумулятора. Целью катушки зажигания в повышении напряжения аккумулятора (6 или 12 Ватт) до высокого напряжения, которого достаточно для создания искры свечой.

Катушка зажигания приводится в действие непосредственно от источника 12 вольт. Когда катушка подключена к аккумулятору, индуктор «заряжается» током. Чтобы создать магнитное поле току требуется несколько миллисекунд — это из-за обратного напряжения, вызванного увеличением магнитного поля. За короткий период зарядки на высоковольтной клемме образуется тысяча вольт, что недостаточно для образования искры.

Сама искра возникает, когда размыкаются контакты выключателя.

Резкое изменение тока вызовет скачок высокого напряжения на катушке. Изменение тока происходит на первичной обмотке, но поскольку первичная и вторичная обмотки имеют большую взаимную индуктивность, вы получите скачок порядка 100 или более вольт на первичной, и 10000 вольт на вторичном. Даже скачок на первичной катушке проволоки может немного тряхануть вас, если вы держите провода при отключении питания.

В двигателе с четырьмя или более цилиндрами высоковольтный вывод катушки соединен с распределителем — высоковольтный вращающийся переключатель-«бегунок», для выбора, к какой из искр подключить катушку. Это намного дешевле, чем иметь одну катушку зажигания для каждого цилиндра. Существуют двухискровые катушки подающие искру на два цилиндра, где каждый конец катушки зажигает две свечи одновременно. Это экономит ресурс работы свечей, но снижает срок жизни катушки и может привести к взрыву глушителя, если водитель долго не может завести автомобиль и подолгу прокручивает стартер.

Магнето

Это основная часть системы зажигания индуктивного типа — источник энергии. Магнето — это небольшой электрический генератор, который вращается двигателем и способен генерировать очень высокое напряжение и не нуждается в батарее в качестве источника внешней энергии. Магнит содержит как первичную, так и вторичную обмотку, поэтому ему не нужна отдельная катушка для повышения напряжения, необходимого для работы свечи. Магнето бывает с вращающимся якорем и с вращающимся магнитом. В первом типе якорь вращается между неподвижным магнатом. Во втором типе якорь неподвижен, а магнаты вращаются вокруг якоря.

Ford использовал магнето для подачи искры — с 1909 по 1927 гг. Технология питания искры от магнето сохранилось до сих пор — например, в поршневых авиационных двигателях. Это те, которые стоят в самолетах с пропеллером. Магнето также ставят в двигателя маленького объема, чтобы не использовать громоздкий аккумулятор – переносные бензогенераторы, бензопилы, газонокосилки. Магнето запускается в них, когда вы дергаете за шнур раскручивающий магнето. Недостаток индукторной системы в зависимости от оборотов двигателя.

Работа системы зажигания магнето

Принцип работы магнитной системы такой же, как и у системы зажигания от батареи, за исключением того, что в магнитной системе Магнето используется для выработки энергии, вместо батареи. Схема четырехцилиндровой магнитной системы зажигания следующая.

МАГНИТНАЯ СИСТЕМА ЗАЖИГАНИЯ
  1. Сначала при запуске двигателя или при вращении двигателя вращается магнит, который генерирует очень высокое напряжение;
  2. Конденсатор зажигания подключен параллельно с контактным прерывателем. Один конец обмотки магнитопровода также заземлен через прерыватель контакта;
  3. Кулачок регулирует размыкатель контакта. Везде, где выключатель разомкнут, ток течет в конденсатор заряжая его;
  4. Когда конденсатор становится зарядным устройством, первичный ток падает, а магнитное поле разрушается. Это вызовет высокое напряжение в конденсаторе;
  5. Теперь эта высоковольтная электродвижущая сила пробивает искру на свече зажигания через распределитель.

Поскольку частота вращения двигателя при запуске низкая, ток, генерируемый магнитом, довольно мал. По мере увеличения частоты вращения двигателя поток тока также увеличивается. Так, с магнитной системой зажигания всегда есть проблема запуска двигателя, а иногда нужна и отдельная батарея. Эта система лучше всего подходит для высокооборотистых двигателей, поэтому она ставиться в гоночных автомобилях, авиационных двигателях и т.д.

В «классике» индуктивное зажигание, где источник питания магнето, запускается вручную — когда дергаешь бензопилу или заводишь машину вручную крутя «кривой» ключ.

Преимущества:
  1. Эта система более надежна на средних и высоких скоростях;
  2. Аккумуляторная батарея не нужна;
  3. Требует реже технического обслуживания.
Недостатки:

  1. Проблемы с запуском из-за низкой скорости вращения при запуске;
  2. Дороже по сравнению с системой зажигания аккумулятора;
  3. Существует вероятность пропуска зажигания из-за утечки, потому что проводка несет высокое напряжение.

Батарейное зажигание

В 1910 году Кеттеринг представил миру альтернативу в виде батарейного зажигания.

Система имеет 6- или 12-вольтовую батарею, заряжаемую генератором с приводом от двигателя для подачи электроэнергии; катушку для увеличения напряжения; устройство для прерывания тока от катушки; распределитель для подачи тока в правильный цилиндр; свечу, в каждом цилиндре. Ток идет от батареи через первичную обмотку катушки, через прерыватель и обратно к батарее.

Батарея — источник энергии для зажигания, работающий в качестве накопителя энергии, получаемой от генератора, приводимого в движение двигателем. Он преобразует механическую энергию в электрическую энергию. В системе искрового зажигания используют аккумуляторы двух типов: свинцово-кислотные и щелочные. Первый в легком транспорте, в электропогрузчиках, а другой — в тяжелом коммерческом транспорте, в оборудовании локомотивов и вагонов для пассажиров. Аккумулятор соединён с первичной стороной катушки зажигания.

Как заводится автомобиль?

Итак, еще раз. Аккумулятор содержит заряд. Он подает ток на первичную катушку. Катушка создает магнитное поле, за счет чего во вторичной катушке образовывается мощный заряд. Прерыватель обрывает цепь, и скопившаяся энергия на катушке пробивает искру в свече через провод высокого напряжения созданной электродвижущей силой (ЭДУ). Свеча воспламеняет смесь воздуха и топлива в цилиндре, поршни начинают вращаться, двигатель работает. За счет механической энергии вырабатываемой двигателем, вращается генератор вырабатывающий за счет движения ток. Ток заряжает аккумулятор, чтобы завести машину в очередной раз и питает вторичные системы машины типа фар, мультимедиа, обогревателя.

Источник http://samm-pc.ru/safety/kontaktnaya-sistema-batareinogo-zazhiganiya-sistema-zazhiganiya.html

Источник http://garobelaz.ru/zazhiganie/kak-rabotaet-batarejnaya-sistema-zazhiganiya.html

Источник http://ssangyong-echoauto.ru/raznoe-2/batarejnaya-sistema-zazhiganiya-avtomobilya-batarejnaya-sistema-zazhiganiya-sistema-zazhiganiya-3.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: